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Appendix A: Performance of Yen’s algorithm for
computing closest paths.
Yen’s ranking loopless shortest paths algorithm [Yen71]
computes the k-shortest paths between a source and desti-
nation in a graph for a given k. It inductively computes the
ith shortest path between two nodes using the common sub-
paths of the (i− 1)-shortest paths. The algorithm uses the
result of the shortest path as starting point, followed by a
relaxation procedure until the distance constraint is met.

This algorithm can be used to compute the closest path as
follows: identify a set of k′ shortest paths, for a large enough
k′ such that the k′th shortest path is the closest path. Unfor-
tunately, due to a grid-like structure of the road network in
most part of NYC, the above algorithm doesn’t work well.
This is because it has to compute and discard a lot of sub-
optimal paths. For example, Fig. 1(b) illustrates the class of
paths that Yen’s algorithm produced for a taxi route shown
in Fig. 1(a). Note that the algorithm would try every possi-
ble detours around any block along the shortest path, e.g. as
denoted by the green (d = 1.06), orange (d = 1.27) and pur-
ple (d = 1.34) lines in Fig. 1(b), before changing the path
structure. In this case, the algorithm needed to go through
40 paths before finding a path having the required length. In
our experiments, this number even reached as high as 10000
in many cases. Fig. 2 plots a histogram of k′ for a random
set of 1000 trips that occurred over a day. We found that not
only more than 380 trips had k′ greater 1000, but over 280 of
these trips had k′ greater than 10000. Thus, Yen’s approach
was not a practical option for our model.

Appendix B: Accuracy of the closest path algorithm.
We received a small sample of recent taxi trips which in-
cluded the actual route taken by the taxis. Note that this in-
formation is not available for the three years worth of his-
torical data collected by the taxi agency. We use this data to
validate the accuracy of the closest path algorithm for iden-
tifying taxi routes.

Given the number of way-points n to be used, we com-
puted the k-closest paths for each of the trips. (As in the
paper, we set k = 20). We then compute the intersection of
these paths with the actual route. The maximum intersection
percentage over all the k paths is used to measure the ac-
curacy of the prediction for that trip. The route in Fig. 1(a)
shows one such sample taxi trip for which the actual path
taken by the taxi was available. Notice that the route taken
by the taxi is different from the shortest path between the
pickup and dropoff locations. Fig. 1(c) shows the k = 4 clos-
est paths computed using our method. Note that one of paths
correctly identifies the actual path. For this example, the ac-
curacy is measured to be 100%.

Using n= 1, the average accuracy of our trip route predic-
tion was 82.8%. That is, on an average, we could correctly
predict 82.8% of the taxi route. When we increased the value
of n to 2, the average accuracy increased by only 1.9%. How-
ever, the time taken to compute the k-closest paths became
over 200 times slower. This is because, as mentioned in the
paper, the time-complexity of our closest path algorithm is
exponential in the number of way-points n (O(|V |n)). When
we increased the value of n to 3, this time further reduced
by another two orders of magnitude. Therefore, we choose
n = 1 in our closest path computation since it provides the
best trade-off between accuracy and time.

Appendix C: Validation of the closest path traffic model.
In order to validate the closest path traffic model, we com-
pare the results obtained from our model with those obtained
using the shortest-path model [SRS∗13], as well as with the
actual data obtained using EZ-pass tag readers. NYC has a
set of such readers placed at strategic points in order to col-
lect traffic information. We had access to data for the month
of November, 2011, corresponding to Madison Avenue be-
tween 49th and 57th streets and Lexington Avenue between
49th and 57th streets. Using the time-stamps of the differ-
ent EZ-pass tag IDs along a street, we estimate the speed
of traffic on that street. Since the tag readers are placed at
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(a) (b) (c)
Figure 1: Comparison of the k-closest path computation based on Yen’s model [Yen71] and ours. (a) The red dots show the
actual gps track of a taxi ride that did not follow the shortest route due to traffic conditions; (b) top k (k = 4) paths based
on Yen’s model, starting out as the shortest path and gradually growing until it matches the required distance; and (c) our
approach started out with those paths that best match the required distance, thus, providing more accurate answers in much
less time.
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Figure 2: Histogram of the frequency of number of short-
est paths k′ to be computed to obtain the closest path using
Ren’s algorithm.

frequent points along a street, we expect the speeds com-
puted to be representative of the actual traffic. The computed
speeds are then used to compute the mean and standard de-
viation. The number of samples available for the tag reader
data per road segment was small (only around 100 samples
per hour). This not only decreases the precision of the traffic
speed that we are comparing against, but it also restricts us
from using small time intervals for the validation. Therefore,
the speeds from both the models, as well as from tag reader
data was aggregated for hourly intervals.

We use the Kullback-Leibler (KL) divergence met-
ric [BA02, KL51] to compare the two traffic models with
the actual data. For two distributions P and Q, the KL diver-
gence measure DKL(P||Q) computes the amount of informa-
tion lost when approximating P using Q. Given the traffic de-
rived from the closest path model Mclosest , we first compute a
set of divergence measures Dclosest = DKL(tag||Mclosest) for
different time periods. Here, tag represents the distribution
obtained using the EZ-pass tag readers. A lower divergence
value reveals a better approximation of the observed traffic
distribution. We repeat this process using the shortest path to
infer traffic speeds to obtain Dshortest .

Fig. 3 plots the histogram of Dclosest and Dshortest . Note
that most of the divergence values of the closest path model
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Figure 3: Histogram of the KL divergence measures ob-
tained when comparing the closest path and shortest path
models with the distributions computed using data from EZ
pass tag readers. Note that values of Dclosest from more time
periods are closer to zero than the values of Dshortest indi-
cating that the closest path model better approximates the
observed traffic speeds.

are close to zero, implying that this model is a good approx-
imation of the observed speed distribution. Moreover, the
closest path model has more divergence values close to zero
than the shortest path model, implying that this model bet-
ter approximates the observed speed distribution when com-
pared to the shortest path model. As mentioned earlier, this
is due to the fact that many of the taxi trips do not take the
shortest path from its pick-up location to its drop-off loca-
tion, and therefore, the closest path model does a better job
of identifying the most probable routes.

We can also compare the actual predicted speed values
across the different models, by plotting the speed distri-
bution over time for different streets. Fig. 4 compares the
speeds computed using tag readers, with the closest path
model, and shortest path model on two road segments along
Lexington Avenue and Madison Avenue. Note that the mean
speed of the road segments computed using both the models
lie within the speed range as computed using the tag readers.
Also, for most of the time periods, the mean speed computed
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(a) Lexington Ave., between 50th – 51th Street
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(b) Madison Ave., between 50th – 51th Street

Figure 4: Comparison of the speed of traffic on Fridays and
Saturdays in November 2011 computed using tag readers,
the closest path model, and the shortest path model.
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Figure 5: Variation of traffic function for different values of
k.

using the closest path model is closer to that of the tag reader
than the mean speeds of the shortest path. We noted this be-
havior along other streets as well.

Note that commercial map tools, like Google maps, do
not provide historical traffic data, even for the main roads. It
was therefore not possible to compare our results with these
tools.

Appendix D: Traffic function computation: choice of k
In order to identify a good value for k, we picked a time
period, and computed the traffic function for varying values
of k. Given the different traffic functions, we compute the
standard deviation of the speeds for each edge of the road
network. We computed this standard deviation for different
ranges of k. In particular, we found that for ranges includ-
ing values of k larger than 20, the variance did not vary by
much, and was close to zero. Note that a zero variance indi-
cates that changing k has no effect on the traffic function.
This is because, as k increases, more paths in the result-
ing set have lengths significantly different from the actual
length thus decreasing the weight assigned to these paths.

Figure 6: Histogram showing the frequency of trip distances
of the taxi trips within Manhattan that happened over a pe-
riod of one month.

Figure 7: Taxi distribution at 12 pm and 8 pm on Fridays.
Note that taxis tend to move along avenues (colored black)
compared to streets.

Such paths therefore have very little influence in the traffic
function.

Fig. 5 plots the frequency of this variance of speeds
among the edges. When k ≤ 20, there is a high variance be-
tween the traffic functions for different values of k. However,
when k > 20, the variance is mostly close to zero.

Appendix E: Taxi trip distance distribution
A majority of the trips that occur within Manhattan are short
distance trips. This is illustrated in Fig. 6, which shows the
histogram of the trips that happen over a month.

Appendix F: Case Study: Taxi patterns
An overview of the general positions of taxis can be ob-
tained by visualizing the density distribution of taxis using a
color map. Fig. 7 shows this distribution at two different time
periods on Fridays. The coloring varies from dark to white
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in different shades of yellow, a darker color meaning lower
density. Notice that most of the taxi movement is along the
avenues (roads running north to south) compared to streets
(roads running east to west), with a few exceptions, e.g.,
42nd St. near Bryant Park and Times Square, and 48th St.
near Rockefeller center, which are well-known tourist spots.
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