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Abstract
Multidimensional projection is emerging as an important visualization tool in applications involving the visual
analysis of high-dimensional data. However, existing projection methods are either computationally expensive or
not flexible enough to enable fully interactive data manipulation. That is, they do not support the feedback of user
interaction into the projection process. A mechanism that dynamically adapts the projection based on direct user
interaction would go a long way towards making the technique more useful with a large range of applications and
data sets. In this paper we propose the Piecewise Laplacian-based Projection (PLP), a novel multidimensional
projection technique, that, due to the local nature of its formulation, enables a versatile mechanism to interact with
projected data and to allow interactive changes to dynamically alter the projection map, a unique capability of the
technique. We exploit the flexibility provided by PLP in two interactive projection-based applications, one designed
to organize pictures visually and another to build music playlists. These applications illustrate the usefulness
of PLP in handling high-dimensional data in a flexible and highly visual way. We also compare PLP with the
currently most promising projections in terms of precision and speed. The results show that PLP perform very
well also according to these quality criteria.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques— H.5.0 [Information Interfaces and Presentation]: General—

1. Introduction

Much research has been done on creating mechanisms to
handle multi-valued data. In visualization, most approaches
rely on feature spaces to devise visual tools that assist in
analyzing high-dimensional data. Among these techniques,
multidimensional projection (MP) techniques have been
playing an important part, even becoming an essential tool
in recent visualization systems [DANS10, CWDH09], par-
ticularly due to the fact that they can, like no other method
of visual analysis, handle large number of attributes and in-
creasingly high numbers of data items successfully.

Despite their increasing acceptance, multidimensional
projection techniques have disadvantages that restrict their
use as fully interactive visual exploration tools capable of ac-
companying the analysis process to completion. For exam-
ple, most multidimensional projection methods are global,
that is, a single global transformation maps data instances
from a high-dimensional space to the visual space. This
global nature leads to difficulties maintaining locally the

properties of grouping and group separation that the data
may posses, thus preventing analysis of correlation between
elements in a closer neighborhood to points of interest in the
data set. In the large group of applications where the anal-
ysis starts as a global or overall interpretation but ends in
the analysis of smaller groups up to individuals, the global
nature of the available methods tends to hamper the user ex-
perience and prevent local adjustments to occur. Such lo-
cal adjustments are necessary in order to incorporate user
knowledge into the projection process. A few MP techniques
provide mechanisms that could allow modifying the projec-
tion in accordance with user intervention, but the local ones
fail, in terms of computational cost requirements, to be in-
teractive and the global nature of others limits the type of
changes that can be performed.

In this paper we propose a novel multidimensional pro-
jection technique, the Piecewise Laplacian-based Projection
(PLP). In contrast to most existing methods, PLP has a lo-
cal character that renders it more versatile than other projec-
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tion schemes in addressing the drawbacks discussed above.
To complete the proposed solution, we present a mechanism
for locally changing the projection, in accordance with user
interaction, in such a way that the mapping itself adapts to
user manipulations of the layout during visual exploration.
This mechanism can be combined with the local nature of
PLP so as to allow for drastic changes in the projection map,
enabling the exploration and organization of the data in a
flexible and dynamic way. The provided flexibility can be
exploited in many applications, such as user-driven picture
organization and music playlist construction, as described in
Section 5.

Computation efficiency and accuracy are the other im-
portant properties of PLP. As we show in our results sec-
tion (Section 4), compared to 10 techniques with 8 data sets
varying from 1,500 to 250,000 points, PLP turns out to be
quite effective, presenting accuracy comparable to the best
existing techniques while still enabling interactive user in-
tervention. The projection accuracy and flexibility in terms
of layout dynamic adaptation render PLP an attractive pro-
jection technique for problems involving large multidimen-
sional data visualizations and interactive exploration.

We can summarize the contributions presented in this pa-
per as:

• PLP: A novel technique that relies on local rather than
global maps to project high-dimensional data to visual
space (Section 3). Accuracy is comparable to the best
existing techniques, but, unlike most existing techniques,
the projection is interactively steerable.

• Neighborhoods from Visual Space: A new mechanism
to define neighborhoods in the high-dimensional space
through manipulation of the visual space (Section 3.3),
which allows for drastic changes in the local maps, in
order to adapt them to the perception the user has of the
data distribution.

• Real Data Case Studies: In Section 5 we show how our
technique can be used to design a projection-based ap-
plication to visually organize pictures and to create mu-
sic playlists. To the best of our knowledge, this is the
first time a multidimensional projection is explicitly em-
ployed to perform data organization interactively.

2. Related Work

Most projection methods derive from multidimensional scal-
ing techniques (MDS). MDS methods perform embedding
into a visual space by considering only distance measures
(also called dissimilarities) between pairs of instances, ren-
dering Cartesian coordinates for the original data instances
unnecessary. When data is endowed with Cartesian coordi-
nates, Euclidean distance can be used to generate the pair-
wise distances for MDS methods.

Projection and MDS methods vary greatly in terms of the

mathematical foundation they rely on. Techniques based on
spectral decomposition, for example, typically compute em-
bedding coordinates for each data instance from eigenvec-
tors of a double-centered transformation applied to the dis-
similarity matrix (symmetric matrix containing the dissim-
ilarity between each pair of data instances). Since the very
first approach proposed by Torgeson [Tor65], much effort
has been made to reduce the high computation costs asso-
ciated with the eigendecomposition [BN03, KCH02, FL95].
Some spectral-based methods, such as Isomap [TdSL00],
can also deal with distance measures other than Euclidean,
thus accomplishing tasks such as “manifold unfolding”.
Although effective for dimensionality reduction purposes,
these methods have a global nature and do not provide mech-
anisms for user intervention in the result, both shortcom-
ings for many highly interactive applications with multi-
level data analysis.

Spectral-based methods that make use of a more lo-
cal methodology have also been described in the litera-
ture. An important representative is LLE [RS00]. Other
good examples are Landmarks MDS [dST04] (L-MDS) and
Pivot MDS [BP07]. LLE performs local linear fittings as
the first processing step, accomplishing the final embedding
through a global eigendecomposition approach. L-MDS and
Pivot adopt an opposite scheme, first making use of an eigen-
decomposition to embed a subset of instances, mapping the
remaining instances by an interpolation mechanism that re-
lies on the eigenvectors computed in the first step. The eigen-
decomposition introduces a “global” component to those
methods while still preventing interactive local changes.
Therefore, methods based on spectral-decomposition can
hardly be employed in interactive applications such as the
ones proposed in this paper.

Nonlinear optimization methods rely on different schemes
to find a minimum for an energy function, usually called
the stress function. First proposed by Kruskal [Kru64], op-
timization methods tend to be computationally expensive,
although reasonable performance can be reached by us-
ing multigrid-based numerical solvers, as shown by Bron-
stein et al. [BBKY06]. Following the idea of a subset of
samples towards reducing computational cost, Pekalska et
al. [PdRDK99] proposed an algorithm that first embeds a
subset of samples using a gradient descent approach and then
places the remaining instances using a global linear map-
ping.

Force-based methods arose from the seminal work by
Eades [Ead84], which makes an analogy between stress
function minimization and mass-spring systems. The high
computational cost of the algorithm proposed by Eades
has been mitigated by Chalmers [Cha96] by making
use of neighborhood structure and a subset of samples.
Variants of Chalmers’ algorithm with lower computa-
tional cost [MRC02, JM04, TMN03] and GPU implementa-
tion [IMO09, FT07] have also been proposed to speed-up
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convergence and handle large data sets. While Chalmers’
method can be seen as a local approach, computational times
are still prohibitive for interactive applications.

Paulovich et al. [PNML08] proposed a technique called
Least Squares Projection (LSP) that uses a force-based
scheme to first position a subset of the samples, mapping
the remaining instances through a Laplace-like operator. In
contrast to our approach, Paulovich’s method makes use of
a global graph to build the multidimensional mapping, re-
sulting in a large linear system. Moreover, LSP constraints
the system through a least square procedure, rising compu-
tational cost considerably. Although LSP enables user inter-
vention, its global nature and high computational cost means
that the user can not freely change the projection layout. The
same is true for the recent linear mapping PLMP [PSN10],
which combines a force-based scheme to place represen-
tative instances in the visual space with a global linear
mapping. The new PLP technique described in this paper
also employs a Laplacian matrix to carry out the multidi-
mensional projection. However, we make use of a dynamic
mechanism to define neighborhood graphs from which we
build a set of local Laplacian matrices to accomplish the
mapping, thus avoiding global structures such as the ones
present in LSP and PLMP.

3. The PLP Method

The PLP method is made up of three main components:
sampling, neighborhood graph building, and Laplacian lin-
ear system solving, as illustrated on the right. Sampling
refers to the selection of a small subset of instances. For
each of these samples, a neighborhood graph and a set of
control points are defined. The graph and control points
associated with a given sample are used respectively to
set and constrain the corresponding Laplacian systems.
In other words, the overall
idea is to associate a neighbor-
hood graph and a set of con-
trol points to each given sam-
ple. Each graph gives rise to
a Laplacian matrix that accom-
plishes the projection of the
instances corresponding to the
graph nodes. Control points are
used to constrain the Laplacian
system, thus steering the positioning of projected instances
in the visual space. Projected instances can then be han-
dled by the user so as to improve the grouping of similar
instances. Neighborhood graphs and control points are dy-
namically updated during user intervention, thus modifying
the Laplacian matrices and the resulting projections. Details
on each step are presented in the following sections.

3.1. Sampling, Neighborhood Graphs and Control
Points

Let D = {p1, . . . , pn} be a data set with instances in a d-
dimensional space and S = {s1, . . . ,sm} a subset of samples
taken from D. The way one chooses the set S may vary de-
pending on the application. For example, if the main goal is
only to project D into the visual space then samples can be
chosen using a clustering approach (see Section 4). Samples
can also be provided by the user in order to drive the pro-
jection in accordance with a priori information. As we show
in Section 5, the freedom to define samples can be exploited
to design applications towards picture and playlist organiza-
tion.

The samples S are used to split D into m subsets D =
D1, . . . ,Dm, where each subset Di comprises the instances
in D closer to si than to any other sample s j, j 6= i. The
Di subsets can be computed in O(mn) using the bisecting
k-means [SKK00] technique. The number of samples m is
chosen as m =

√
n because this is an upper bound for the

number of groups in a data set [PB95], thus most clusters
should have a representative among the sample points. The
neighborhood graph NDi corresponding to Di is defined as
the k-nearest neighbor graph (k-NNG) connecting instances
in Di. Each node in NDi represents an instance in Di. Two
nodes in NDi are connected by an edge if at least one of them
is among the k-nearest neighbors of the other. The parame-
ter k is set to 10 in our implementation, as this value turned
out to be a good compromise between computational cost
(the larger k, the more costly to build the graph) and graph
connectedness (the number of neighbors of each node). We
noticed in our experiments that when k was small (k < 5) the
graph Di became weakly connected, impacting negatively on
the result of the projection.

As mentioned before, each neighborhood graph NDi gives
rise to a Laplacian system that is used to project instances
from Di to the visual space. In order to ensure a unique so-
lution for the projections, we have to impose constraints on
the Laplacian system, which, in our case, are given through
control points. The set of control points constraining the
projection of Di is defined by randomly picking out

√
ni

instances from Di, where ni is the number of instances in
Di. As discussed in [PNML08],

√
ni randomly chosen con-

trol points yield a good balance between computational cost
(control points have to be placed in the visual space using
costly methods) and the quality of the final mapping. The
main advantage of choosing the control points locally rather
than globally is to ensure that each subset Di has a number
of control points proportional to its number of instances, a
property difficult to attain with global selection. Details on
how to build the Laplacian matrices and their corresponding
constraints will be discussed in the next subsection.
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3.2. The Laplacian system

The Laplacian-based projection mechanism relies on the as-
sumption that each element pi of a data set D can be written
as a convex combination of its nearest neighbors in the visual
domain. In more mathematical terms, let pi be an instance
in Di and Viz(pi) = {pi1 , . . . , pik} be the set of nodes con-
nected to pi in NDi. Let also (xpi j

,ypi j
) be the coordinates

of each element pi j ∈ Viz(pi) when mapped to the visual
space R2. Assuming the convex combination hypothesis, the
two-dimensional coordinates of pi can be written as:

pi = (xpi ,ypi) = ∑
pi j∈Viz(pi)

αi j(xpi j
,ypi j

) (1)

where αi j > 0 and ∑αi j = 1.

Each element in Di gives rise to a vectorial equation as
described in (1), which can be assembled into two homoge-
neous linear systems:

Lx = 0; Ly = 0 (2)

where x and y are vectors representing the x and y coordi-
nates of the mapped elements and L the matrix derived from
equation (1) given by:

Li j =


1, if i = j,
−αi j/α

∗
i , if i 6= j and pi j ∈Viz(pi)

0, otherwise.

where α
∗
i = ∑

pi j∈Viz(pi)
αi j . The weight αi j can be set as the

inverse of the distance between pi and p j or simply equal
to one, giving rise to the so called combinatorial Laplacian.
Although the weighted graph Laplacian can also be used
(see [PNM06]) we choose the combinatorial Laplacian in
our implementation, since it produces good visual results
while still being numerically more robust. Moreover, as we
show in Section 5, the neighborhood graphs are dynamically
updated in the interactive applications. Designing a consis-
tent heuristic for assigning weights to new edges created dur-
ing user interaction is difficult.

It can be shown that if NDi has only one connected com-
ponent then the rank of L is ni− 1. Thereby, assuming NDi
connected, the linear systems (2) admit a non-trivial solu-
tion. The lack of geometric information in (2) can lead to so-
lutions that are difficult to interpret and analyze. PLP deals
with this problem by constraining the systems with geomet-
rical information provided by the control points. The ratio-
nale is to project the control points associated with each Di
by a MDS method then use their x and y coordinates in the
visual space to constrain the Laplacian systems. In our im-
plementation we use the force-based scheme [TMN03] to
project the control points. Since the number of control points
is just a fraction of the number of instances in Di, the high
computational cost of the force-based scheme is not an is-
sue. Moreover, we use a penalty method to constraint the

Figure 1: Left: Control points from all subsets Di are simul-
taneously embedded in the visual space and their Cartesian
coordinates used to constrain the Laplacian systems of PLP.
Right: Projection generated from a single global Laplacian
system constrained by the same control points used on the
left. Numbers show computational times and the stress func-
tion. Results appear similar, but PLP (on the left) is more
accurate (lower stress) and faster.

system [XZCOX09], speeding up the underlying numerical
manipulation.

An advantage of using control points to constrain the sys-
tems (2) is that we can preserve coherence when mapping
the subsets Di. In other words, if we project each Di inde-
pendently, no guarantee can be given towards ensuring that
neighbor subsets will be mapped close to each other in the
visual space. However, by handling the control points prop-
erly one can attain a global relationship among groups with-
out losing the local processing benefit of PLP. More specif-
ically, the global relation can be built as follows: Let Ci be
a set of control points chosen from a subset Di. Consider
now the set C = C1, . . . ,Cm comprising the union of control
points from all subsets Di, i = 1, . . . ,m. The set C can be
seen as a new data set containing a fraction of the instances
from D. If the set of control points C is embedded in the
visual space using the force-based scheme, the obtained x
and y Cartesian coordinates of the control points originating
from a particular subset Di will be in unison with the con-
trol points of other subset D j, thus reintroducing the global
correspondence among the subsets lost during the partition
stage. This global control point mapping will keep similar
groups close to each other, putting apart dissimilar subsets.

Figure 1 shows a comparison of projecting a data set us-
ing the PLP with all control points embedded simultaneously
(left) and the layout produced by using the same control
points but a single Laplace system (right) – the approach
employed by LSP. Both approaches produce similar results,
however, PLP turns out to be more accurate (lower stress)
and computationally faster.

3.3. Handling Control Points and Neighborhood
Graphs

As shown above, PLP can present a global behavior if con-
trol points from all subsets Di are simultaneously embedded
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(a) (b)

(c) (d)

Figure 2: Given a projection (a) the user can drag and repo-
sition projected instances (b). Neighborhood graphs are up-
dated to reflect the user defined neighborhood relationship
(c), thus modifying the Laplacian matrices and the projec-
tion (d).

into the visual space using a global MDS approach. How-
ever, the local nature of PLP allows for modifying the pro-
jection in accordance with user intervention.

The rationale is to carry out local modifications by chang-
ing the neighborhood graphs and control points. More
specifically, suppose a data set D has been projected using
the procedure described in the previous section (Figure 2(a)).
The user can interact with projected instances, picking out
a particular instance p (overline will be used to denote in-
stances in the visual space) in the visual space and dragging
it to a new position, as illustrated in Figure 2(b).

Let c ∈ C be the control point closer to p and Dc, Dp be
the subsets containing c and p respectively. There are two
cases to be considered, either p ∈Dc or p /∈Dc. If p is in Dc
then NDp = NDc and the only change we carry out is to add
an edge connecting p to c in neighborhood graph, which in-
duces a change in the Laplacian matrix associated to NDc. If
p /∈ Dc then we not only add an edge connecting p and c but
also move p and its neighbors from NDp to NDc, as illus-
trated in Figure 2(c). If NDp becomes disconnected due to
the removal of p then we add new edges between the discon-
nected parts. The new edges connect the 10 nearest samples
in both disconnected parts. This heuristic violates the KNN
property, but ensures full rank for the Laplace system.

In short, the graph updates are just enforcing instances to

become neighbors in the neighborhood graph, even though
they are far from each other in the original high-dimensional
space. Figure 2(d) illustrates the resulting projection af-
ter updating neighborhood graphs with the new user-driven
neighborhood relationship.

We also consider the possibility of just separating groups
of instances. If the user drags p to a position in the visual
space where its distance to c is larger than a threshold then
we consider the user wishes to create a new subset Di. In this
case, we run the procedure described in 3.1 in the subset Dp,
using p as a new sample.

The novelty in the process described above is to drive
changes in the neighborhood graph by interacting in the vi-
sual space. This mechanisms allows the user to interact with
projected data quite freely, visually regrouping and segment-
ing the data, as we show in the following.

4. Results and Comparisons

In this section we present the results of applying PLP to
project several distinct data sets. We also provide a compre-
hensive set of comparisons to assess the accuracy and speed
of PLP. All the results were generated in an Intel R© CoreTM

i7 CPU 920 2.66GHz, with an NVIDIA R© Quadro FX 3800
video card and 8GB of RAM. PLP is implemented in Java, as
is the numerical solver – we use the Cholesky factorization
available on Java Colt Project (http://acs.lbl.gov/
~hoschek/colt/). We are using Cholesky because two
linear systems have to be solved and the factorization of one
system can be used in the solution of the other, resulting in a
performance gain.

We start by showing how the PLP handles the unfold-
ing problem, as presented in Figure 3. Figure 3(a) shows
the so called Swiss Roll data set and Figures 3(b) and 3(c)
present the resulting PLP projection when a force-based
scheme [TMN03] and the Isomap [TdSL00] are respectively
employed to embed control points in the visual space. Notice
that PLP is able to unfold the surface when Isomap is em-
ployed to project control points (Figure 3(c)). For the sake
of comparison, Figure 3(d) shows the result of projecting
the Swiss Roll data set with the PLMP [PSN10]. PLMP also
requires as first step the projection of a subset of represen-
tatives, and in Figure 3(d) we employed Isomap to embed
the required representatives. Due to its global nature, PLMP
could not unfold the Swiss Roll, even though geodesic dis-
tances have been used to project representatives.

Although PLP has been tailored mainly to be an interac-
tive projection tool, accuracy and computational time are
both competitive. We have employed eight distinct data
sets in our experiments, some of them synthetic, allowing
comparison between PLP’s performance and other available
techniques employing data sets that vary with enough vari-
ation size and data dimensionality. The data set WDBC is
a breast cancer data set obtained from digitized images of
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Figure 4: original-distance × projected-distance scatter plots. From left to right PLP, PLMP [PSN10],
Fastmap [FL95], Hybrid [JM04], Landmarks MDS [dST04], L-Isomap [dST03], LSP [PNML08], Pekalska [PdRDK99], Pivot-
MDS [BP07], Random Projection [Ach03] and Glimmer [IMO09]. Top-left numbers are respectively the normalized stress and
computational time in seconds.

breast masses. It has 539 instances in thirty-dimensional
space that have been classified into two distinct groups: ma-
lignant and benign cancer. Wine-red (1,599 instances with
11 dimensions) and Wine-white (4,989 instances with 11 di-
mensions) are related to red and white variants of the Por-
tuguese “Vinho Verde” wine. The Segmentation (2,100 in-
stances in 19 dimensions) data set is composed of features
of 3× 3 regions of a set of 7 outdoor manually segmented
images. Shuttle (43,500 instances with 9 dimensions) is
composed by log information instances split into 7 differ-
ent classes. The Mammals (10,000 with 72 dimensions) is
an artificially generated data set representing different fea-
tures of mammals belonging to four distinct classes (dogs,
cats, horses, and giraffes). Viscontest (30,000 instances with
10 dimensions) corresponds to a sample of time step 99
of a data set containing information from a simulation of
an ionization front instability propagation during the forma-

tion of a galaxy. The Viscontest data set was obtained from
the IEEE Visualization 2008 Contest data set [WN08] and
the remaining ones were recovered from the UCI Machine
Learning Repository [AN07]. Finally, Fibers (250,000 in-
stances with 30 dimensions) was obtained from the 2009
Pittsburgh Brain Competition (PBC) – Brain Connectivity
Challenge (http://pbc.lrdc.pitt.edu/).

Figure 4 shows a comparison of PLP with ten other
techniques, including two state-of-the-art methods in
terms of projection methods for visualization, namely,
PLMP [PSN10] and Glimmer [IMO09]. These ten methods
have been chosen because they are shown to be, amongst
the studied methods, the ones that present the best trade-
off between accuracy and running times. The original-

distance × projected-distance scatter plots clearly
show that PLP outperforms most of the techniques, since it
results in an almost 45o diagonal layout, meaning that orig-
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(a) (b)

(c) (d)

Figure 3: Unfolding problem. (a) The Swiss Roll data set.
(b) PLP using force-scheme and Euclidean distances to em-
bed control points. (c) PLP using Isomap to embed control
points. (d) PLMP using Isomap to embed representative in-
stances.

inal distances are well preserved in the resulting projection.
Numbers at the top-left of each plot correspond to compu-
tational time in seconds and the normalized stress given by
∑i j(di j−di j)2

∑i j d2
i j

(d and d are the distance between instances pi

and p j in the original and visual space).

Besides demonstrating the effectiveness of PLP, the
original-distance × projected-distance scatter
plots also bring out issues that are not apparent from error
measures such as the normalized stress. Note for example
in Figure 4 that L-Isomap presents a low stress value when
projecting the Fibers data set. However, one can easily no-
tice from the scatter plot that distances are not consistently
preserved by L-Isomap. The opposite is also true, the scat-
ter plot generated by projecting the Shuttle data set using
Pekalska technique results in a high value of stress, but dis-
tances do not deviate significantly from the ideal 45o line.

Figures 5(a) and 5(b) depict boxplots generated from nor-
malized stress and computational times, shown on top-left of
each plot in Figure 4. It is evident from Figure 5(a) that PLP
is one of the most accurate methods, figuring among the best
methods described in the literature, such as Pekalska and
L-MDS. Regarding computational times, Figure 5(b) shows
that PLP is at least an order of magnitude slower than PLMP,
Fastmap, L-MDS and Random.

Regardless of the loss in processing time against other
similarly accurate methods, the values are motivating
enough for developing interactive applications of large data
sets. In terms of the interaction capability, and particularly
on the dynamic of changes, PLMP is the only method that

(a)

(b)

Figure 5: Stress and computational times boxplots.

enables interactive modification to the projection map while
being faster than PLP.

In the issue of dynamic changes lies the greatest advan-
tage of PLP. The intrinsic local nature of PLP supports dras-
tic changes in the projection to be fed back into the mapping
process so as to reconstitute mapping to be in the form de-
fined by the user. This particular feature is not shared by
PLMP, as Figure 6 clearly shows. Notice from Figure 6(b)
that PLP was able to preserve the groups defined by user
handling of the control points interactively. Due to their
global nature, PLMP and LSP could not strictly follow the
displacement of the control points (see Figures 6(c) and
6(d)). Therefore, PLP is the only technique able to follow
the user-driven layout with acceptable computational cost.

It is important to point out that computational times shown
in Figures 4 and 5(b) include the time spent to compute the
groups Di, the neighborhood graphs, the placement of con-
trol points, the Laplace matrices, Cholesky factorization, and
the projection itself. During user interaction, though, updates
take place only locally, thus demanding just small changes in
the underlying structures. In fact, localized changes can be
accomplished very quickly. In the tests we have carried out,
PLP took around 90ms to update each subset Di that had
changed after user interaction (considering a projection with
250,000 instances). This rate renders PLP as a fully interac-
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(a) (b)

(c) (d)

Figure 6: Changing the projection map by repositioning
control points. Top right window shows the position of the
control points. (a) Projection generated by PLP considering
using control points embedded by a force-based scheme. (b)
PLP’s result after repositioning control points in accordance
with its classes. Groups were preserved in the final projec-
tion. (c) and (d) Projections generated by PLMP and LSP
respectively using the same control points as in (b). Group
separation is not preserved in the final projection.

tive high dimensional data exploration and organization tool,
as we show in the applications described below.

5. Applications

Making it possible for a projection to be guided by user
knowledge through flexible interaction with the projected
data is useful functionality that can be exploited in many data
visualization problems. To demonstrate this, we have inte-
grated the PLP framework in two visual data exploration and
organization applications that are based on similarity. One
application is a system to organize sets of images, and the
other is a system to support the creation of music playlists.
The idea is to ask the user to provide a set of “seeds” (the
samples discussed in Section 3) from which the subsets Di
and the control points are defined. Control points are em-
bedded in the visual space using the force-based scheme and
they can be manipulated to improve grouping of similar in-
stances. Finally, the whole data set is projected onto the vi-
sual space using the Laplacian maps.

Image Grouping We use the Caltech database in our im-
age grouping experiments. The data base contains 3,812 col-

(a)

(b)

Figure 7: (a) Image collection projected with control points
positioned using the force-based scheme. The features are
not good enough to separate the distinct group of images.
The color of the borders indicates the class each image be-
longs to. (b) A new projection is defined repositioning con-
trol points, resulting in a good separation of image groups.
The top right window shows the position of control points.

ored images organized in 6 unbalanced classes: airplanes
(1074 images), buildings (750 images), cars (526 images),
faces (450 images), leaves (186 images) and motorbikes
(826 images) [FPZ03]. We employ the bag-of-visual fea-
tures (BoVF) [YJHN07] approach to compute the image fea-
tures. The BoVF was set with a “vocabulary” of 150 fea-
tures. The vocabulary was built from 50,000 keypoints ob-
tained with the Harris-Laplace point detector and dense sam-
pling [MTS∗05]. Features from each keypoint were then ex-
tracted with the SIFT method [Low04].

Notice from Figure 7 that before user manipulation the
projection of the pictures overlaps different classes. The
user can modify the projection map to improve or create
new groups of similar instances in the projection (see Fig-
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ure 7(b)). We have implemented a selection tool that allows
to pick out and displace a set of projected instances simulta-
neously, making the re-arrangement of control points a sim-
ple task. In fact, fewer than thirty interactions were need to
organize the pictures as presented in Figure 7(b). In this ap-
plication control points are directly handled, but any pro-
jected instance can be moved freely (the control points closer
to the moved instances are also displaced) to change projec-
tion maps and thus the final layout.

Playlist Construction The image grouping system pre-
sented above can be modified to generate music playlists.
We use a database with 3,857 music tracks and JAudio
Tool [FM06] is used to extract low-level features from mp3
files, such as beat points, statistical summaries, and so on,
resulting in vectors with 78 dimensions.

Figure 8 shows screen shots of the system. The user starts
by selecting a few music tracks (seeds) from a list contain-
ing the names of the artists and music titles (top-left screen in
Figure 8). The system uses the user selected music tracks as
samples. Some samples are also automatically computed to
represent music tracks that are very different from the ones
provided by the user. The idea is to create groups that repre-
sent music tracks the user is not interested in, which work as
repositories for musics that should not be in the playlists.

From the user-defined as well as automatically computed
seeds, the system compute the groups and the control points
associated to each group. The control points are embedded
in the visual space by force-based scheme and some of them
are displayed in the system main window (Figure 8(a)). The
whole set of control points is not displayed to avoid clut-
tering. The user can then interact with the control points,
dragging some music tracks around to change the projection
and thus the arrangement of musics that make up the ini-
tial playlists (Figure 8(b)). Finally, the whole data set is pro-
jected, being the playlists defined by the instances belong-
ing to the neighborhood graphs containing the user-defined
seeds (Figure 8(c)).

An advantage of the system prototype described above is
that multiple playlists can be built simultaneously, function-
ality that is not available in any commercial tool available,
making the creation of playlists a less time consuming task
(see the accompanying video). To the best of our knowledge,
this is the first time a multidimensional projection technique
has been employed as a user driven data organization tool.

6. Discussion and Limitation

The comparisons presented in Section 4 clearly show that
PLP is an efficient projection scheme, surpassing, in cer-
tain requisites such as accuracy and interactivity, the state-
of-art methods. Its good performance is a consequence of
combining the piecewise Laplacian mappings with the new
mechanism to update neighborhood graphs, which enable
local modification of projections in a cost effective way.

Figure 8: Playlist maker: The user starts selecting sample
music tracks to seed the playlists (top-left). Neighborhood
graphs and control points are computed from the sample
tracks. Control points are embedded in the visual space and
some of them are displayed (a). User interacts with control
points grouping the most similar ones (b). Finally, the whole
data set is projected and playlists are created from the neigh-
borhood graphs containing the user-defined samples.

The original-distance × projected-distance scat-
ter plots provide a convincing visual evidence of the accu-
racy of PLP while also supporting the assessment of the
accuracy of other projection methods. Another important
characteristic of PLP is its simplicity, essentially requiring
the construction of neighborhood graphs, Laplacian matri-
ces and a numerical linear solver.

The idea of dynamically updating neighborhood graphs
in accordance with user intervention not only allows updat-
ing the underlying structures efficiently but also provides a
natural mechanism to define groups. The nodes of each con-
nected graph resulting from user interaction corresponds, in-
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deed, to instances belonging to the same group. We have ex-
ploited that property to create music playlists.

A limitation of PLP is that the computational cost to up-
date neighborhood graphs during interaction depends on the
number of instances handled simultaneously. That might be
a problem if the user selects a large number of instance to
be repositioned simultaneously, as most of the neighborhood
graphs have to be updated, thus resulting in intensive compu-
tation that could impact interactivity. To avoid this problem
one can limit the number of instances to be selected simul-
taneously, however, this might lead to an increasing number
of user interventions during the data organization process.
Neighborhood graphs containing too few or too many in-
stances may show up after a large number of interactions,
which can affect the performance of the system. A possible
solution is to keep track of the number of elements in each
graph, merging small graphs and splitting large ones.

7. Conclusion and Future Work

In this work we proposed a novel projection technique
called Piecewise Laplacian-based Projection, or PLP, which
is shown to be accurate and cost effective in applications
demanding user intervention. The evaluation we provided
shows that PLP outperforms existing projection methods
with respect to stress minimization as well as interactive data
exploration and organization. Moreover, the potential of us-
ing PLP to interactively analyze multidimensional data sets
opens new possibilities for applications which have not been
addressed until now, due to the poor performance of exist-
ing projection methods in interactive applications, or due to
global definitions that prevent user participation in impor-
tant decision points. Flexibility, effectiveness, and ease of
implementation, though, render PLP an attractive projection
method for a large variety of applications.

We are investigating the applicability of PLP as an inter-
active tool in streaming data. The possibility of interactively
changing the projection combined with streaming the projec-
tion should result in an powerful tool for applications such
as remote sensing and surveillance.
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