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ABSTRACT

Species distribution models (SDM) are used to help understand
what drives the distribution of various plant and animal species.
These models are typically high dimensional scalar functions,
where the dimensions of the domain correspond to predictor vari-
ables of the model algorithm. Understanding and exploring the dif-
ferences between models help ecologists understand areas where
their data or understanding of the system is incomplete and will help
guide further investigation in these regions. These differences can
also indicate an important source of model to model uncertainty.
However, it is cumbersome and often impractical to perform this
analysis using existing tools, which allows for manual exploration
of the models usually as 1-dimensional curves. In this paper, we
propose a topology-based framework to help ecologists explore the
differences in various SDMs directly in the high dimensional do-
main. In order to accomplish this, we introduce the concept of
maximum topology matching that computes a locality-aware cor-
respondence between similar extrema of two scalar functions. The
matching is then used to compute the similarity between two func-
tions. We also design a visualization interface that allows ecologists
to explore SDMs using their topological features and to study the
differences between pairs of models found using maximum topo-
logical matching. We demonstrate the utility of the proposed frame-
work through several use cases using different data sets and report
the feedback obtained from ecologists.

Keywords: Function similarity, computational topology, species
distribution models, persistence, high dimensional visualization.

1 INTRODUCTION

Species distribution models (SDM) combine observations of
species occurrence or abundance with environmental layers. They
are used to gain ecological insights and to predict distributions
across various landscapes including terrestrial, freshwater, and ma-
rine realms [16]. They help ecologists answer questions about the
relationship between the species and environmental variables.

There are multiple modeling approaches used for SDMs, some
relying more on the traditional least-square and maximum likeli-
hood methods to relate predictors data to the observed data; while
some use an iterative, machine learning and Monte Carlo resam-
pling techniques to explore the relationship. The different model-
ing techniques have varying degrees of complexity and the model to
use depends on the goals of the study and the data (primarily the re-
sponse and the assumptions). However, considering the application
of multiple modeling techniques to a common data set can provide
insight into the behavior of each modeling approach [44].

Forecast of species’ distributions presents substantial discrepan-
cies based on the predictive modeling approach used [10, 23] high-
lighting the uncertainties associated with these predictions [10, 32].
Several studies show that these algorithms can predict substan-
tially different future potential ranges even if current predictions

are largely congruent [7, 40, 44]. Such model disagreement helps
ecologists understand areas where their data or understanding of the
system is incomplete and to either guide further investigation of a
model, or to identify an implausible model. These discrepancies
can also be an important source of uncertainty in model projections
to new spatial or temporal extents. It can also help the improvement
of methods and / or parameters used for the models. It is therefore
important for ecologists to be able to explore in detail the different
models and be able to study the differences between them.
Problem Definition. SDMs are typically high dimensional scalar
functions, where the dimensions correspond to different model
algorithms and environment variables, also known as predictors.
Ecologists are interested in studying the behavior of these models
over their parameter space comprised of their predictors. However,
their current approach resorts to visualizing 1-dimensional (1D)
slices of the models. That is, in considering the influence of one
specific predictor, the common technique is to select a predictor of
interest and fix the values of the other predictors to their mean val-
ues, and compare the variation of the models with respect to the
selected predictor. This results in a 1D curve known as response
curve [43] (e.g., see Fig. 8). The main shortcoming of restricting
the analysis to considering only one predictor at a time is that it
is not possible to obtain an accurate view of the model. This is
because, features resulting from the interactions between the other
predictors are lost through such dimensionality reduction. More im-
portantly, even when looking at 1D slices, the response curves are
restricted to the fixed value of the other predictors. While there has
been some work where ecologists analyze two-dimensional slices
of the models [17, 44], the above problems still hold.
Contributions. The goal of this work is to help ecologists under-
stand the interactions between the predictors in SDMs, and thus
have a better understanding of what drives the various species. To
this end, we propose the use of computational topology to help ex-
plore and compare SDMs directly in the high dimensional domain.
In particular, we use the extrema of the corresponding scalar func-
tions to guide the users towards interesting features of the SDM.

While such exploration of the SDMs will provide more flexibil-
ity to the ecologists, manual comparison between the two models
is still a time consuming and often impractical process. To over-
come this, we propose a novel technique that can be used to com-
pare two scalar functions in a locality-aware manner. We do this by
first creating a bipartite graph where the edges correspond to pos-
sible correspondences between the extrema of the two functions.
The edge weights are defined such that they reflect both the spa-
tial locality of the extrema, as well as the likeness in terms of their
function values. The maximum weight matching of the bipartite
graph is then computed to obtain the correspondences between the
set of extrema. These correspondences are then used to compute a
topological similarity measure between the two functions. We also
show through experiments the robustness of the matching and the
resulting topological similarity measure.

We design a visualization interface to help ecologists explore
SDMs and analyze the differences between them. Finally, work-
ing together with ecologists we demonstrate the effectiveness of our
technique and the user interface through several use case scenarios
involving SDMs of different species.



Figure 1: Topology of scalar functions. (a) Height function f1 de-
fined on a 2-dimensional manifold having 4 maxima. πi represents
the persistence of a maximum xi. (b) The join tree tracks the con-
nectivity of the super-level sets of a scalar function. (c) Each branch
in the branch decomposition of the join tree corresponds to the path
between a creator-destroyer critical point pair.

2 BACKGROUND

We now provide the necessary background on concepts from com-
putational topology that form the mathematical and algorithmic
basis of this work. We refer the reader to the following text-
books [15, 26] for a comprehensive discussions on these concepts.
Morse functions and Species Distribution Models. Let M de-
note a d-manifold with or without boundary. Given a smooth, real-
valued function f :M→R defined on M, the critical points of f are
exactly where the gradient becomes zero. The function f is a Morse
function if it satisfies the following conditions [26]: (1) All critical
points of f are non-degenerate and lie in the interior of M; (2) All
critical points of the restriction of f to the boundary of M are non-
degenerate; and (3) All critical values are distinct i.e., f (p) 6= f (q)
for all critical points p 6= q. For a Morse function f defined on a
d-manifold M, there are d +1 types of critical points indexed from
0 to d. In this work, we are interested in the two most familiar
types – minimum (with index 0) and maximum (with index d), cor-
responding to a point p whose function value is smaller, or larger,
than all other points within a sufficiently small neighborhood of p,
respectively. Fig. 1(a) shows a height function, f1, defined on a
2-manifold. This function consists of 4 maxima – x1,x2,x3, and x4.

A species distribution model is a d-dimensional function m :
Rd → C, where C = [0,1] denotes the unit interval. It assigns a
probability for the presence of a given species based on the values
of its d predictors. In the remaining discussion, we assume that the
input SDMs are Morse functions. In case the above conditions do
not hold, simulated perturbation of the function [14, Section 1.4]
ensures that no two critical values are equal.
Topological persistence. A sub-level set of a function f ,
M(−∞,a] := {x ∈M | f (x)≤ a}, is the set of all points having func-
tion value less than or equal to a. A super-level set is similarly
defined as the preimage of the interval M[a,+∞).

Consider the sweep of the function f in increasing order of func-
tion value. The topology of the sub-level sets changes when this
sweep passes a critical point. In particular, at a critical point,
either new topology is generated or some topology is destroyed,
where topology is quantified by a class of ‘cycles’. For exam-
ple, a 0-dimensional cycle represents a connected component, a
1-dimensional cycle is a loop that represents a tunnel, and a 2-
dimensional cycle bounds a void. A critical point is a creator if
new topology appears and a destroyer otherwise. One can pair up
each creator v1 uniquely with a destroyer v2 that destroys the topol-
ogy created at v1. The persistence value of v1 and v2 is defined as
f (v2)− f (v1), which intuitively indicates the lifetime of the feature
created at v1, and thus the importance of v1 and v2.

The function in Fig. 1(a) consists of three creator-destroyer pairs
– (x2,s1),(x3,s2), and (x4,s3). While the global maximum x1 has
a persistence value of ∞, we use a notion of extended persistence
where in addition to the above pairs, the global maximum is paired
with the global minimum [1]. The persistence values of the set of
maxima xi of the function in Fig. 1(a) is highlighted as πi.

A
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C

Figure 2: f1 and f2 are two functions defined on the same domain.
Existing techniques identify peak C to be similar to A instead of B
even though B and C are in the same neighborhood of the domain.

Topological persistence of a feature measures the amount of sim-
plification required to smooth the input function in order to remove
that feature. This property is later used to define a distance measure
between two SDMs.

As mentioned above, in this paper we only consider extreme
points of the input function as features. Given an input domain of
size n, the persistence of such features can be computed efficiently
in O(n logn+nα(n)) time using the union-find data structure [1].
Merge trees. A join tree tracks the topology of the super-level sets
of the input function, while the split tree tracks the topology of the
sub-level sets [9]. The join tree and split tree are together known as
merge trees. Fig. 1(b) shows the join tree of the function shown in
Fig. 1(a). The join / split tree is computed using the union-find data
structure to keep track of the connected components of the super-
level set (or the sub-level set). This procedure also returns the set of
creator-destroyer pairs corresponding to the topological features.

A merge tree can be decomposed into a set of branches using
the obtained critical point pairs [31]. Each branch corresponds to
the path in the merge tree between a creator-destroyer critical point
pair. Thus, the height of a branch represents the persistence of the
corresponding critical points. Fig. 1(c) shows the branch decompo-
sition of the join tree in Fig. 1(b). The smoothing of a function ob-
tained by removing an extremum can be represented abstractly by
removing the branch corresponding to that extremum together with
all its sub-branches. This observation is key in our algorithm that
computes the topological similarity measure between two SDMs.

3 RELATED WORK

In this section, we first briefly discuss related work that are used
to explore high dimensional functions. Next, we survey topology
based techniques that are used for comparing two scalar functions.
Exploring High Dimensional Functions There are multiple vi-
sual analytic techniques to explore the parameter space of high di-
mensional scalar functions (also referred to as models). Most of
these methods are based on sampling the parameter space or us-
ing regression algorithms to approximate / predict output from un-
known configurations. Matkovic et al. [25] proposed to visualize
multirun data as families of data surfaces (with respect to pairs
of independent dimensions) in combination with projections and
aggregation of the data surfaces at different levels. The same au-
thors [24] also proposed to generate new sample points by interac-
tively narrowing down the control parameters in the visualization
via brushing to support visual steering of a simulation. Along the
same lines HyperMoVal [33] was designed to visually relate one or
more high-dimensional scalar functions with validation data. Later,
Berger et al. [4] extended HyperMoVal using regression models for
a continuous exploration of the sample parameter space. Similarly,
we can find applications of parameter exploration in other domains
such as image segmentation [41]. Other approaches partitioned the
input space and provided visual analytics strategies for exploration
of the input space using one or two parameters at the time [5, 28].
Some work has been done in exploring and understanding the dif-
ferences in model simulations. For example, Poco et al. [34] pro-
pose the SimilarityExplorer tool for a visual comparison of the
model output but they do not explore the input parameter space.
However, all of these approaches require users to manually explore
the space in order to identify interesting regions.



Topological abstractions have also been used to create visual
representations of high dimensional functions. Topological Land-
scapes [42] provided a 2D terrain representation having the same
contour tree as the input high-dimensional scalar function. When
the input are point clouds Oesterling et al. [30] proposed to recon-
struct the scalar function using density kernels and used topologi-
cal landscapes to visualize the density of points using a 2D terrain.
Geber et al. [20] segmented the input domain using an approximate
Morse-Scale complex on a cloud of point samples. Then each seg-
ment was represented by a curve using a regression. Finally those
curves were visualized in 2D space using dimensionality reduction
algorithms. While these techniques helped users understand the
topology of the involved function, it was difficult to use these meth-
ods to compare scalar functions as the neighborhood information
was lost in the transformation to a 2D representation.

In the ecology domain, while there has been some work on try-
ing to study two-dimensional slices of SDMs [17, 44], ecologists
mostly use the SAHM package [43] which supports exploration
through 1D response curves.
Comparing Scalar Functions Early methods of comparing scalar
functions directly used the persistence of the critical points of the
functions to do so. A distance function, usually bottleneck distance,
between the persistence diagrams [11] of two functions are used to
compare them. Using an alternate representation, called barcode,
Carlsson et al. [8] represented the persistence of the features as in-
tervals on a real line. They then defined a metric to compute the
similarity between two barcodes. A disadvantage of using a pure
persistence based measure is that they do not capture the neighbor-
hoods of the features.

More recent methods for comparing scalar functions used some
form of topological abstraction of the scalar functions to com-
pare them. Morozov et al. [27] defined the interleaving distance
between two merge trees as the minimum cost of shifting points
in one tree to obtain a mapping of one tree to the other. Beke-
tayev et al. [3] defined a distance between two merge trees by
comparing all possible branch decompositions of the two trees.
Bauer et al. [2] extended the interleaving distance between two
merge trees to Reeb graphs and proposed the functional distor-
tion distance to compare two Reeb graphs, where a Reeb graph
is a topological structure which tracks the connectivity of level
sets of a scalar function with increasing function value. More re-
cently Narayanan et al. [29] proposed a distance measure between
two scalar functions based on the maximum common subgraph be-
tween complete extremum graphs, where an extremum graph is a
topological data structure that captures proximity between extreme
points in a scalar field [12]. While extremum graphs naturally en-
code locations of extrema and saddles, it is with respect to a single
function. The usefulness of this locality information is not clear
when comparing two functions. Alternative to computing distance
measures, topological structures have also been used to structurally
compare two functions. Multi-resolution Reeb graphs [22] as well
as Morse-Smale complexes [18] have been used for comparing two
shapes. Saikia et al. [35] introduced a data structure called extended
branch decomposition graphs using which they could compare be-
tween all sub-trees of two merge trees. Topological abstractions
have also been used to identify similar structures within a scalar
function [37, 38].

While the above methods capture adjacency based on the con-
nectivity between level sets, they still suffer from two shortcom-
ings. First, it is possible for two adjacent features (adjacent edges)
to actually be far from each other. Second and more importantly,
the actual locality of the features identified as similar need not be
located in the same locality of the domain, which is a requirement
for the target application. For example, consider the two functions
shown in Fig. 2. the above techniques would identify maximum A
in f1 with C in f2 even though the two maxima are far from each

(a) (b) (c)
Figure 3: Computing the maximum topology matching. (a) 2-
dimensional scalar function f2 that is compared with the function f1
in Fig. 1(a). Join tree of f2 is shown in the bottom left side. (b) The
constructed bipartite graph between the maxima of the two functions.
(c) The computed matching between the maxima.

other. However, given that B and C are in a similar locality of the
domain, we are interesting in identifying B with C.

Instead of an abstraction, level sets and their properties have also
been used for comparing scalar functions [6, 36, 39]. Since these
techniques require computing the level sets, extending them to work
for high dimensional functions is non-trivial.

4 SCALAR FUNCTION SIMILARITY

We now describe our technique to compare two scalar functions
that are defined on the same domain. The main idea is to identify
the best match, in terms of the location and function value, between
the set of extrema (of the same type) of the two functions. This
matching is then used to compute the similarity measures between
the functions.

In this section, we first describe the procedure to identify the cor-
respondence between the set of extrema of two functions. Next we
define two similarity measures between the functions and describe
how they are computed using the found correspondences. Without
loss of generality, the techniques in this section are described with
respect to the set of maxima of the functions. The same procedures
apply to the set of minima as well.

4.1 Maximum Topology Matching
The first stage in identifying the similarity between two scalar func-
tions f1 and f2 is to identify the correspondence between the ex-
trema of the functions. Intuitively, two similar functions will have
the same topology and hence the same number of extrema. Thus,
the goal is to get the “best” match possible in the sense that there
is one-to-one mapping between the extrema of the two functions.
Without loss of generality, we assume that the two functions are
normalized between 0 and 1.

Let M+
1 and M+

2 be the set of maxima of f1 and f2 re-
spectively. We first create a complete weighted bi-partite graph
GT (M+

1 ,M+
2 ,E+) in which the two partitions corresponds to the

maxima of the two functions respectively. Consider a pair of max-
ima a ∈M+

1 and b ∈M+
2 . Let the difference between their function

values be δa,b = | f1(a)− f2(b)|. Let dg(a,b) denote the distance
between the pair of maxima. Since the SDM is defined on Rd , we
use the Euclidean distance for this purpose. We assign a weight
wa,b to the edge corresponding to the pair of maxima a and b as
follows: wa,b = (1−δa,b)× exp(dg(a,b)2/r2). Here, r is a cut-off
radius, which acts as a knob to define the neighborhood sensitivity.

The weight wa,b essentially consists of two parts. A high value
of (1− δa,b) implies a high similarity between the two maxima in
terms of their function value. The weighting term exp(dg(a,b)2/r2)
ensures that importance is given to pairs of maxima that are closer
to each other, thus preserving the neighborhood locality. Thus a
high weight between a pair of maxima implies that they are similar
not only in terms of their function value, but are also within the
same locality of the domain. For example, in order to compare
function f2 shown in Fig. 3(a) with function f1 from Fig. 1(a), we
create the bipartite graph shown in Fig. 3(b). The thickness of the
edges represents their weights. Note that the edges corresponding



(a) (b) (c)
Figure 4: Computing topological similarity. (a) Example join tree of a
function that is being compared. Let maxima A, B and C be matched
to maxima of the other function. (b) The first step of the algorithm
computes the matching tree T ′S , a connected sub-tree of the join tree
TS induced by the matched maxima. (c) The connected components
of TS \T ′S corresponds to the regions of the function that has to be sim-
plified to obtain a perfect matching. The minimum amount of simplifi-
cation required to do so measures the topological similarity between
the two models.

to maxima pair that are nearby in the function domain have weight
higher than those that are further away.

We next compute the maximum weighted matching [19] on the
graph G. A matching is defined as a set of pairwise non-adjacent
edges. A maximum weighted matching is defined as a matching
where the sum of values of the edges in the matching has maxi-
mum value. The resultant matching provides the correspondence
between the set of maxima of the two functions. For the example
of functions f1 and f2, the obtained matching is shown in Fig. 3(c).
Note that our technique matches the maxima x1 to y2 and x2 to y1
due to their proximity. This is unlike existing techniques that do not
use the locality information to match features, which would have
matched x1 to y1 and x2 to y2. Also, these techniques would have
matched x3 to y3 since they use the relative persistence of features
when computing similarity.

4.2 Similarity Measures

Topological Similarity. The topological similarity between f1 and
f2 is defined as the effort required to make the two functions have
the same number of maxima in the same neighborhood of the do-
main. Such functions will produce a perfect matching in G, that
matches all vertices of the bipartite graph. This quantity is mea-
sured as the minimum amount of simplification that is to be per-
formed to attain such a perfect matching.

Consider the function f1 having the set M+
1 as its maxima. Let

C ⊆ M+
1 be the set of maxima that have a corresponding match

in M+
2 . Then C = M+

1 \C is the set of maxima that have to be
simplified. The join tree and the appropriate branch decomposition
is used to compute, τ1, the amount of simplification required as
follows. Let ro be the root of the join tree TS. That is, ro is the
global minimum of the function f1. In the first step, we construct
the matching tree T ′S , the join tree of f ′1 which is the function f1 in
which the set of maxima C are removed (simplified). This tree is
constructed as follows:
1. For each maximum m ∈ C, construct the path Lm, which is the

unique path from the leaf corresponding to m to the root ro.
2. the matching tree T ′S ⊂ TS is the tree induced by the paths Lm

computed above, i.e., {T ′S =
⋃

m∈C Lm}
Fig. 4(b) shows the matching tree computed from the join tree in
Fig. 4(a). Here, three maxima were matched in the bipartite graph.

Let TS = TS \T ′S . Consider the connected components K of TS.
Simplifying the set of maxima in C is equivalent to removing each
of these connected components from TS. These components cor-
responds to a connected sub-tree of TS. The effort τk required for
simplifying a given component k is equal to the height of the largest
branch of the corresponding sub-tree. Fig. 4(c) shows the different
components that have to be simplified for the example in Fig. 4(a).

(a) (b)
Figure 5: Effect of noise in the neighborhood of a maximum. (a) Pres-
ence of noise could introduce multiple extraneous extrema in the
neighborhood of a relevant maximum y j. (b) In case one of the noisy
maximum y′j is matched in the maximum matching, then the amount
of simplification needed to remove y j is bounded by ε, while the sim-
plification needed for other extraneous maxima is bounded by 2ε.

τ1 is then computed as the maximum value of τk over all com-
ponents k ∈ K. τ2, the minimum amount of simplification required
for function f2 is computed in a similar manner. The topological
similarity τ = max(τ1,τ2) is the minimum simplification required
to obtain a perfect matching between the two functions.
Functional Similarity Given a perfect matching between the max-
ima of the two topologically similar functions, it is still possible
that the matched maxima could differ in their function values. The
functional similarity measures this difference. Formally, the func-
tional similarity φ is the maximum δa,b over all edges (a,b) that are
part of the matching. Intuitively, this quantity is used to measure
the maximum amount of change required to construct functionally
similar functions from topologically similar functions.

4.3 Implementation
In order to efficiently compute the topology of a species distribution
model m : Rd → C, the high-dimensional domain of m is approx-
imated as a nearest-neighbor graph, G, of a set of points sampled
uniformly, using Latin Hypercube Sampling, from the domain of
Rd . m is then represented as piece-wise linear (PL) function de-
fined on G – m : G→ C. The function is defined on the vertices of
the graph and linearly interpolated within each edge.

We use the sweep algorithm by Carr et al. [9] to compute the
merge trees, which can be accomplished in O(n logn + mα(m))
time. Here, n and m are the number of vertices and edges, respec-
tively, in G and α is the inverse Ackermann function. Let the num-
ber of extrema in the two functions, f1 and f2, be t1 = O(n1) and
t2 = O(n2) respectively. The created bipartite graph has nv = t1+ t2
nodes and ne = t1 × t2 edges. Computing the maximum weight
matching can be accomplished in O(n2

v lognv + nvne) using Dijk-
stra’s algorithm with a Fibonacci heap [19]. Even though the time
complexity is cubic, we achieve interactive running times in prac-
tice for computing the matching (see supplemental document).

4.4 Effect of Noise
Noise-based artifacts are common in real world data sets. It is
therefore important to consider the effect of noise to the stability of
the matching, and the resulting similarity measures. If the original
matching remains even with noise, then given the low persistence
of the noisy extrema that are added, there is no significant change
to the similarity measures. So let us assume that the matching is
different from the original. Consider a matched pair of maxima
(xi,y j) between functions f1 and f2. Without loss of generality,
assume that there was noise introduced into the function f2. This
would potentially create additional maxima in the neighborhood of
y j. Let the effect on the function value variation due to the noise
be bounded by ε f . Depending on the changes in the weights, the
following scenarios are possible.
1. The matching (xi,y j) does not change due to noise.
2. The matching algorithm pairs xi with a maximum y′j in the

neighborhood of y j. In this case, both τ and φ change by a
maximum of ε f . This is because, y′j is in the resulting match-
ing tree, and y j has to be simplified. The persistence of y j in



the new configuration is then bounded by the change in function
value (See Fig. 5), which in the worst case is 2ε f .

3. The matching pairs xi with yk not in the neighborhood of y j.
This implies that weight of the edge (xi,yk) managed to in-
crease past the weight of edge (xi,y j), i.e., wxi,y j ≈wxi,yk . While
the weight of the matching in this case would not significantly
change, the values of τ and φ could be affected.

We are interested in further exploring Case 3 above when the max-
imum y j as well as the set of maxima y′j that was created (due to
noise) in the neighborhood of y j remains unmatched. If at least one
of them is matched to another maximum x′i, then the change to τ

would be similar to Case 2 above.
Since the function values are between 0 and 1, the weights of the

edges in G is always between 0 and 1. When the weights of the
edges under consideration are low, there are three possibilities:
1. Both y j and yk are far away from xi; or
2. One of the maxima, say y j is far from xi but has δ ≈ 0, and for

yk, δ is high while it is within the neighborhood of xi; or
3. Both maxima are in the neighborhood of xi, but have very high

δ (close to 1).
All the above three cases produce an uneven match, i.e., the
matched pair significantly differ in function values, or are not in
the neighborhood of each other. In order to avoid such matches,
we perform an additional pruning step to remove such low weight
edges from the bipartite graph. Thus this step ensures that there is
no significant change in the similarity measures in such cases. Note
that we use a value of 10−6 in this filtration step, thus ensuring that
significant matched pairs are not removed.

On the other hand, let the weights of the edges under consider-
ation be high. Given the exponential decrease in the weights with
respect to distance between the maxima, we can safely assume that
the two maxima are in the neighborhood of xi. Assuming that r is
small (we use 0.1 in our experiments), we can safely infer that the
two function values are similar (and high). Thus, there is no effect
on φ . Let s be a saddle that can be reached through a descending
path from both y j and yk. If there are no other matches in both the
sub-trees, from y j to s and from yk to s, then there is no change to
τ . In case there are other matches, then the persistence of the two
maxima in their respective sub-trees decides the maximum change
in τ , which is bounded by |πyk −πy j |. As we show next, we found
that in practice the changes to τ was indeed small due to noise.
Experiments In order to test the robustness to noise, we perform
three types of experiments. In the first experiment, we fix a func-
tion f1, and artificially induce noise to f1 to obtain a noisy function
f ∗1 . The amount of noise induced was bounded by ε = 10−4. We
then compute the similarity measures between f1 and f ∗1 . Ideally
the topological similarity τ should be zero. We performed this ex-
periment for the different models across three data sets. The mean
and standard deviation of τ across these tests were 1.18×10−4 and
4.05×10−5 respectively. Note that this is less than the 2ε bound.

In the second experiment, we consider pairs of functions, f1
and f2. We induce noise into one of the functions, say f ∗2 =
f2 +noise. We then computed the similarity between f1 and f ∗2 .
Again, τ between f1 and f2 should be the same as f1 and f ∗2 (i.e.
the difference should be 0). In this scenario, we found the mean dif-
ference in the topological similarity to be 6.42×10−5 and standard
deviation to be 6.29×10−5.

The final experiment considers the effect of noise to the locations
of the extrema. We perturb the locations of the underlying graph
(bounded by 10−4), and compute the similarity between the differ-
ent pairs of functions. We then measure the difference between τ

before and after perturbation. The mean and standard deviation of
the difference in τ in this case was 7.8× 10−4 and 8× 10−4 re-
spectively. When looking at individual errors in all of the above
experiments, we found that in several cases, there was no change in
τ demonstrating the robustness of the measure to noise.

Figure 6: We compare three functions – f1, f2, and f3, and use this
comparison to demonstrate the visualization interface. f1 and f2 are
the same functions as used in the earlier examples.

5 EXPLORATION FRAMEWORK

We design a visual interface to help ecologists explore multiple
SDMs. We accomplish this through the use of multiple visualiza-
tions. The interface consists of 4 views.

5.1 Properties View
A matrix is used to represent various properties of different models,
as well as the difference between pairs of models. The diagonal of
this matrix represents the properties of the individual models. The
functional distance φ between the pairs of models is represented in
the upper triangular matrix, while the topological distance τ is rep-
resented in the lower triangular matrix. Fig. 7(a) shows the prop-
erties view for the three sample functions shown in Fig. 6. In case
of functions f1 and f2, the difference is the presence of peak x3 in
f1, which contributes to the topological similarity. In case of f2 and
f3, peak equivalent to z3 is missing in f2, while a peak equivalent
to y1 is missing in f3. However, the simplification required to re-
move z3 is greater than that required for y1, which is denoted by
their topological similarity.

5.2 Features View
This view visualizes the topological features of the selected
model(s) as a scatter plot. The choice of scatter plot was motivated
by the simplicity of the persistence diagram and the fact that the
ecologists were familiar with scatter plots. Each point in the scatter
plot corresponds to a topological feature (maximum or minimum).
The axes of the scatter plot are defined based on what the user wants
to explore, and the maxima and minima are represented as upward
pointing and downward pointing triangles respectively.
Explore single model. In this case, the x-axis of the model corre-
sponds to the persistence (topological significance) of the extrema,
while the y-axis corresponds to its function value. This allows the
user to choose features during the exploration. For example, in case
users are not interested in extrema with a small function value, then
they can focus at the appropriate portion of the plot. The extrema
of the function f1 is shown in Fig. 7(b)-left.
Explore similarities between two models. In this case, each point
in the scatter plot corresponds to a pair of extrema that are simi-
lar, that is, the pair of extrema that match. The axes corresponds
to the function values of the two extrema. This view also provides
the intuition for the functional similarity. A functionally similar
pair of functions should have all points along the diagonal in this
plot. Divergence from the diagonal denotes a disparity in the func-
tion values between the two functions in the parameter space in the
neighborhood of the extreme points. Fig. 7(b)-middle illustrates the
different matches found between f1 and f2 (also see Fig. 3(c)).
Explore differences between two models. In this case, each point
in the scatter plot corresponds to an extremum that is present in one
function but absent in the other. The color of the point denotes the
function it is part of. The x-axis corresponds to the topological sim-
ilarity measure, while the y-axis corresponds to the function value.
Fig. 7(b)-right shows the difference between functions f1 and f2.

5.3 Parallel Coordinates View
Once features of interest are chosen, the spatial region in the do-
main corresponding to the selected features is visualized using the



(a) Properties view (b) Features view (c) Parallel coordinates view
Figure 7: (a) The properties view summarizes the topological similarity and functional similarity between the three sample functions (a lower
value is better). (b) A scatter plot is used to denote the similar and dissimilar extrema of a given pair of functions. The maxima and minima
are represented as upward and downward pointing triangles respectively. When exploring a single function (left), each point corresponds to an
extremum of the function. Here, we show the set of maxima of f1. When exploring the similarities between two functions (middle), each point
corresponds to a pair of extrema that are matched. The figure shows the matching between the maxima of f1 and f2. When exploring differences
between two functions (right), each point corresponds to an extremum that is present in one function, but not in the other. When comparing f1
and f2, the maximum x3 is absent from f2 (c) Parallel coordinates is used to represent the location of extrema of interest in the high dimensional
predictor space. The points corresponding to the set of maxima of f1 (left), the matched maxima between f1 and f2 (middle), and the maximum
that is absent in f2 (right) are shown. when exploring the differences, corresponding critical point pair (saddle s2) is also shown.

Figure 8: Exploring the features of the MARS model for the Brewers
Sparrow data set. (a) Given the set of all extrema, the user sim-
plifies to remove all those extrema having persistence less than 0.2.
Note that this removes all maxima except the global maximum (at
location (1,1) in the scatter plot). (b) The locations of the selected
set of minima of the MARS model are shown using the parallel coor-
dinates view. (c) Note that it is difficult to grasp the presence of high
persistent minima (deep valleys) using the default response curves
that is common in the analysis of this data.

parallel coordinates view. This view provides information on the
location of the selected extrema in the high dimensional space.
Fig. 7(c)-left illustrates the locations of all maxima of the function
f1. Fig. 7(c)-middle and Fig. 7(c)-right show the matched maxima
and the differing maximum respectively.

5.4 Response Curve View

As mentioned in Section 1, a response curve represents a one di-
mensional slice of the function. We include this view in our inter-
face since it helps the ecologists understand the different features
as they are familiar with this representation. By selecting a feature
and a predictor of interest from the parallel coordinate view, the user
can view the response curves with respect to the selected predictor.
The values of the other predictors are set to those corresponding
to the selected extremum. We also show the response curve of the
critical point pair corresponding to an extremum. This helps users
understand how the function changes. For example, when viewing a
minimum-saddle pair, the upward movement of the response curve
indicates the approximate shape of the corresponding “valley” in
the high dimensional space.

Figure 9: Comparing MARS with other models for the Brewers
Sparrow species. Note that multiple significant minima that are
present in MARS are not present in the other models. Also, these
constitute the significant differences between these models.

6 CASE STUDIES

In this section we describe two use case scenarios that are of in-
terest to ecologists. The first case shows how the extrema in the
different models can be used to guide ecologists towards interest-
ing features of the model. The second case demonstrates how our
similarity comparison technique can be used to identify differences
between the models that are otherwise difficult to find. We use two
8-dimensional data sets, Brewers Sparrow and Sagebrush,
for the experiments in this section [43](see Supplemental document
for a description of the data).
Exploring an SDM. In this use case, the user is interested in ex-
ploring the properties of a single SDM. Using the visual inter-
face, the user first selects the species and model algorithm of in-
terest. In this experiment, the user chooses the MARS model for
the Brewers Sparrow species [21]. Fig. 8(a) shows the set of
extrema of this model. An initial simplification is performed to re-
move noise/less significant extrema. Note that for the MARS model,
there are a high number of significant minima. Fig. 8(b) shows the
different predictors corresponding to the set of selected minima. It
is interesting to note that all of these minima occur when combina-
tion of values of mix_18km is low and tri_18km is high. Such a
behavior is clearly not visible using the default response curves [44]
shown in Fig. 8(c).
Exploring differences between given pair of models of a fixed
Species. In this experiment, the user first selects the pair of mod-
els that are to be compared from the Properties view. The user can
now view either the non-matched features or the matched features.
The first experiment considers the differences between MARS and
other models for the Brewers Sparrow species. Users can filter
features (extrema) having low topological similarity. As shown in
the previous use case, the MARS model for Brewers Sparrow
contains a large number of significant minima. It can be seen than
these minima do not match with any minima of the other models,
i.e., there exists no minima in the other models in the corresponding
locations. This is illustrated in Fig. 9 where we look at the different
extrema in the features view. Let us now select a significant dif-
ference between GLM and MARS (having high value of τ). Fig. 10



Figure 10: Locations of a significant minimum-saddle pair in MARS
is shown using parallel coordinates. Note the moving up of the re-
sponse curves of MARS from the minimum to the saddle. At the same
location, we see a different behavior for the GLM model.

Figure 11: Comparing MARS and BRT for the Sagebrush species.
(a) Selecting all significant maxima that are present in BRT but not
in MARS. (b) Note that such difference mainly occurs at a relatively
low value of the mean summer predictor. (c) The response curve at
one of the maximum. (d) This behavior is counter intuitive to the de-
fault response curve, in which we see both models having the same
pattern.

shows the coordinates of the minimum-saddle pair (intuitively the
lowest and highest point of the valley corresponding to the min-
imum) that is present in MARS, but absent in GLM. The response
curves varying the predictor ndvi_270 at the minimum and sad-
dle points shows a significant increase in the shape of the curve in-
dicating a “valley”-like structure in MARS. However, we see a slight
decrease in the response curve for GLM indicating the absence of a
minimum in that region (and thus the difference).

In the next experiment, the user compares the differences be-
tween MARS and BRT for Sagebrush [13]. In particular, the user
selects the set of significant maxima (having topological similarity
> 0.15) in MARS that are not present in BRT (Fig. 11(a)). Fig. 11(b)
shows the coordinates corresponding to these maxima. Note that
all of these differences occur when the value of mean_summer is
low. This is counter intuitive when one looks at the default response
curves of these two models (Fig. 11(d)).
Feedback from Ecologists. When we initially provided our tool to
the ecologists, they found the results to be a little too abstract and
had difficulty in comprehending them. To help them get familiar
and better understand the utility of working directly in the high di-
mensional space, we used a two dimensional slice of the different
models, and setup the software to work with this data. Their famil-
iarity with the features in low dimensions allowed them to relate to
the results from our tool. Also, since they could easily visualize the
2D data, the different features were directly apparent.

An immediate advantage they found using our tool was in being
able to see patterns that was not possible before. This utility is
reflected in the following comment – “the following is an example
in which the 1D response curves were inadequate: With the spruce

fir is that one of the predictors (mean gt 38) has a very large
point mass of presence at 0 and all other values for that predictor
are associated with absence so if I look at response curves in SAHM
holding all predictors constant at their mean then I get flat lines at 0
because as long as mean gt 38 is at its mean value the predicted
value is 0 no matter what the other predictors are.”

The examples presented in the previous section highlight the
complexity of the response surface when considering an eight di-
mensional space (that is, using eight predictor variables) and clearly
provide new information about the various models used by the ecol-
ogists. However, the implications of some of these results was not
immediately apparent, which we plan to explore further in the fu-
ture. As an ecologist collaborator mentioned during one of our in-
teractions, “looking at models this way is interesting for me. With
our current tools for the example in Fig. 11, we wouldn’t have oth-
erwise known that it was at low values of mean summer that the
models differed and that might be of interest in an in depth study”.

In some cases when there is a difference between two models, it
is possible that this is due to missing data. In such cases ecologists
would have to collect additional data from regions having the dif-
ferences. So, such a tool can also help in identifying these regions
of discrepancies.

7 DISCUSSIONS AND CONCLUSIONS

Discretization of a high dimensional function. Identifying an
ideal sample size to represent a high dimensional function is a dif-
ficult problem. For all the experiments in this paper, we used a
sample size of 105 points. We chose this size since we found that
the similarity measure computed did not significantly change even
on increasing the sample size to above 105. This is because increas-
ing the sample size only created noisy extrema which did not affect
the similarity measures.

Each dimension of an SDM corresponds to an environmental
variable, which have a well defined range of values. Given this,
the domain space of the SDM would correspond to the Euclidean
subspace corresponding to these ranges. However, since the units
of these variables differ, we normalize the ranges between 0 and
1 in order to be consistent. Alternatively it will be interesting to
explore other possibilities, such as standardizing the inputs instead.
Neighborhood radius. The neighborhood radius used for weigh-
ing the edge weights of the bipartite graph is largely dependent on
the application and domain expertise. We used a neighborhood ra-
dius r = 0.1 for this purpose, and was based on discussions with the
ecologists, who did not want the matching features to be far away.
Typically, with increasing r, the number of matches between simi-
lar (in terms of function value) extrema that are farther away would
increase. This would potentially decrease the functional similarity
between two models. In case of topological similarity, it could both
increase as well as decrease. It would increase if the larger r causes
a nearby but high persistent extrema that was earlier matched to not
be matched. It could also decrease, since more matches are possi-
ble, thus causing less number of extrema to be simplified. We plan
to investigate this further in the future, to be able to automatically
identify an appropriate radius.
Conclusions. With the focus on helping ecologists better under-
stand SDMs, we design a topology based framework that helps
guide them towards interesting features of the model. We also
propose the concept of maximum topology matching that can be
used to identify similarities and differences between a given pair
of SDMs. Even though the focus was on the ecology domain, our
technique is general and can be applied in cases requiring a locality-
aware way of comparing scalar functions. While we found that our
similarity measures were stable under the influence of noise in prac-
tice, it is still possible to obtain discontinuities in rare cases. We
plan to investigate this further and try to obtain a stable measure.
It will also be interesting to consider topological splines as a visual



metaphor to represent SDMs, and using it to show the identified
similarities and differences. We are currently working with our col-
laborators in an ecology related paper that further investigates the
implications of the results obtained. In future, we are also interested
in exploring the generality of our similarity technique.
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C. François, E. S. Gritti, M. Legay, C. Pagé, et al. Climate change
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