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Star Coordinates is an important visualization method able to reveal patterns and groups from multi-
dimensional data while still showing the impact of data attributes in the formation of such patterns and
groups. Despite its usefulness, Star Coordinates bears limitations that impair its use in several scenarios.
For instance, when the number of data dimensions is high, the resulting visualization becomes cluttered,
hampering the joint analysis of attribute importance and group/pattern formation. In this paper, we
propose a novel method that renders Star Coordinates a feasible alternative to analyze high-dimensional
data. The proposed method relies on a clustering mechanism to group attributes in order to mitigate
visual clutter. Clustering can be performed automatically as well as interactively, allowing the analysis of
how particular groups of attributes impact on the radial layout, thus assisting users in the understanding
of data. The effectiveness of our approach is shown through a set of experiments and case studies, which
attest its usefulness in practical applications.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Developing mechanisms able to reveal patterns, trends, and
groups from high-dimensional data is one of the main goals of
visual analytics. Understanding the impact of data attributes in
pattern and group formation is another important task in this
context. Among the multitude of techniques devoted to visualize
and understand high-dimensional data [1], radial visualization is
noteworthy, as this class of techniques is able to uncover patterns
and groups while simultaneously depicting how data attributes
influence pattern and group formation [2].

A particularly important instance of radial visualization is the
so-called Star Coordinates (SC) [3,4], which builds layouts through
dimensionality reduction. More specifically, SC layouts consist of
circularly arranged vectors vi with a common origin, each vector
corresponding to a data attribute. Data instances are mapped to
the layout as a linear combination of the vectors vi. In order to
improve user experience, SC methods usually enable interactive
resources that allow users to modify the length and angle of the
vectors vi so as to find configurations where patterns and groups
are more clearly pronounced [5,6].
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Despite their usefulness for multivariate data visualization, SC
methods bear limitations that impair their use in relevant sce-
narios. For instance, when the number of data dimensions/attri-
butes is large, the resulting visualization becomes cluttered,
hampering readability and the joint analysis of attribute impor-
tance and group/pattern formation. Surprisingly, few has been
done to mitigate such deficiency of Star Coordinates methods.

In this paper, we propose iStar (interactive Star Coordinates), a
Star Coordinates based visualization technique able to handle data
with a large number of attributes. iStar relies on attribute clus-
tering, which can be performed automatically as well as inter-
actively through user intervention. Moreover, iStar enables visua-
lization resources to assist users in the analysis of clustered
dimensions (attribute axes) and their impact on the resulting
layout. Non-clustered attribute axes can also be automatically and
interactively arranged in the layout to better explore patterns and
groups. The combination of automatic and interactive resources
make our approach an useful alternative for data exploration, as
most patterns are liable to be revealed.

In summary, the main contributions of this work are:

� iStar, a method that combines attributes clustering and visua-
lization resources to enable the analysis of high-dimensional
data via Star Coordinates;

� the combination of automatic and interactive resources to assist
users during data exploration via Star Coordinates. The proposed
n interactive star coordinates approach for high-dimensional
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methodology reduces visual clutter while preserving gist infor-
mation in the layout. Clustered attributes can be further explored
through interactive tools, making Star Coordinates a feasible
alternative for high-dimensional visual data analysis.
2. Related work

The literature about radial visualization is extensive and a
comprehensive survey is out of the scope of this paper. More
detailed discussions can be found in specialized surveys [7,2].

In this section, we focus on the two radial visualization meth-
ods that are more closely related to our approach, namely, Radviz
[8] and Star Coordinates [3,4]. RadViz and Star Coordinates are
indeed well known methods widely employed in the context of
information visualization [9]. Radviz and its variants [10–12] rely
on mass-spring force paradigm to map multidimensional data
onto a two-dimensional visual space. Each attribute variable
(coordinate) is associated to a dimensional anchor placed over a
circle in the visual space. Data instances are attached to the each
dimensional anchor through a spring whose strength is propor-
tional to the value of the instance attribute that corresponds to the
anchor. The equilibrium state of the spring system provides the
position of the instances in the visualization layout.

Star Coordinates associates each attribute (dimension) to a
vector (or axis) in the visual space, which are arranged circularly
around a common center. The position of each data instance is
given by a linear combination of the vectors representing attri-
butes. The length and orientation of the attribute axes in the visual
space directly impacts in the final layout, thus fostering the
development of different strategies to optimally arrange those
axes (see [13,14,5,6,15]). The effectiveness of each strategy
depends on the underlying application, as for example data clas-
sification [16,17].

Radviz and Star Coordinates have interesting properties such as
esthetic appeal, compact layout, and easy interpretability, which
justify their popularity as visualization metaphors. However, they
suffer from issues as to the dimensionality of the underlying data,
that is, the resulting layouts become cluttered when the number of
dimensions is large. For instance, consider the SC example illu-
strated in Fig. 1. In Fig. 1(a), which involves a small number of
dimensions, the layout resulting from SC is clear and readable.
When the number of dimensions increases, the layout becomes
more cluttered (Fig. 1(b)), turning out unreadable when a few
hundred dimensions have to be handled, as depicted in Fig. 1(c).
Fig. 1. Layout generated by Star Coordinates using a different number of d
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The method presented in this paper, iStar, combines attribute
clustering and interactive mechanisms to make Star Coordinates a
feasible visual analytics alternative for exploring data with a large
number of dimensions. Moreover, iStar seeks a balance between
automated and interactive mechanisms, being able to perform
tasks such as attribute clustering and axes arrangement in an
optimal manner, enabling interactive resources to tune SC layouts
according to users expertise. To the best of our knowledge, this is
the first time attribute clustering is employed to improve the
scalability of SC methods. Most of the ideas incorporated into Star
Coordinates can also be adapted to RadViz, although we keep our
discussion focused only on Star Coordinates.
3. The iStar method

iStar comprises three main modules: linear mapping, clustering,
and reordering of attribute axes, as illustrated in Fig. 2. Those
modules can operate in an automated manner, but iStar also
enables a set of interactive resources to support users during the
information discovery process.

Moreover, interactive tools are also combined with visual
widgets to improve users experience. In particular, we propose,
Node Explorer and Node Preview (described in the following) as
visualization widgets that can be triggered interactively to assist
users in the inspection of clustered attributes. Quality visualizer is
another widget that allows users to evaluate the quality of layout
arrangements, helping them in the search for ideal configurations.
3.1. Linear mapping

Star Coordinates maps data instances to the visual space
through linear combination of attribute axes. In mathematical
terms, the position of each data instance Pi is given by:

P
!

i ¼ pi1 v
!

1þpi2 v
!

2þ…þpin v
!

n ¼
Xn
j ¼ 1

pij v
!

j ð1Þ

where n is the data dimension, v!j is the j-th attribute axis, and pij
is a scalar defining the contribution of the j-th axis to the position
of Pi. Orientation and scale of each attribute axis impacts the
position of Pi, as illustrated in Fig. 3. In other words, each instance
Pi scales attribute axes independently. In practice, the scaling
factor of v!j depends on the value of the j-th attribute in Pi.
imensions. (a) 10 dimensions (b) 100 dimensions (c) 500 dimensions.
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3.2. Attribute clustering

Several methods can be used to measure the similarity
between attributes. We have implemented three different meth-
ods: Variance, Principal Component Analysis (PCA) [18], and
Centroids.

Denoting the j-th attribute in Pi as pij, the variance (σ2
j ) is given

by:

σ2
j ¼

Pm
i ¼ 1 ðpij�μjÞ2

m
ð2Þ

where m is the number of instances and μj is the average of the
j-th attribute. The attributes j and k are considered similar if jσ2

j

�σ2
k j is closer to zero. Given the variances, k-Means [19] can then

be used to group similar attributes.
To measure the similarity between attributes using PCA, we

consider each attribute as a point in a m-dimensional space (m is
the number of data instances) and we use PCA to map those points
onto the two-dimensional space generated by the first two prin-
cipal components. Attributes mapped close to each other are
Fig. 2. The i* pipeline comprises 3 main steps: (i) A linear mapping of data, (ii)
Attribute Clustering and (iii) Axes Reordering.

Fig. 3. Star coordinates representation of a data instance Pi.

Fig. 4. Illustration of our combinatorial optim
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considered similar. The groups of similar attributes are obtained by
clustering points that have been projected onto the two-
dimensional PCA space using k-Means algorithm.

The centroid mechanism relies on class information to identify
similar attributes. Therefore, this method can only be employed
when instances are provided with class information. The centroid
pCi

for a class Ci is given by:

pCi
¼ 1
NCi

X
pACi

p ð3Þ

where NCi
is the number of instances in the class Ci. Considering

each centroid as a representative instance of each class, we build
a matrix M with centroids pCi

(8Ci) as column vectors. Then,
k-Means is applied to the rows of M to group similar centroids
attributes.

Each group of attributes computed by one of the methods
described above gives rise to an attribute axis in the iStar layout.
The length of a grouped axis is set to one. The contribution of each
grouped axis to the position of an instance Pi is given by averaging
the values pji for all attribute j in the corresponding group.

3.3. Reordering

Arranging attribute axes properly is of paramount importance
to uncover patterns in SC layouts and the order of the axes plays
an important role in this context. Our prototype system provides
two automated mechanisms to arrange attribute axes, one based
on a combinatorial optimization, as proposed in [20], and another
based on a brute force scheme.

Fig. 4 illustrates how the combinatorial optimization scheme
operates to reorder attribute axes. Initially, we build the k� k
dissimilarity matrix M, where k is the number of attribute axes
(some axes can correspond to clusters of attributes), as follows:

Mij ¼
1
m

Xm
s ¼ 1

psi�mini

maxi�mini
� psj�minj

maxj�minj

����
���� ð4Þ

where m is the number of instances, psi (psj) is the i-th (j-th)
attribute of an instance Ps, and mini (minj) and maxi (maxj) are the
minimum and maximum values of the i-th (j-th) attribute,
respectively. Notice that MijA ½0;1� and the closer to zero the more
similar the i-th and j-th attributes are. Any alternative similarity
measure based on correlation might be employed to fill the ele-
ments in matrix M such as Pearson correlation or Kendall's τ (see
[21] for a comprehensive review focus on parallel coordinates).

The dissimilarity matrix is then represented as a complete
graph where each node corresponds to an attribute axis. Edge
weights are given by the entries Mij (Fig. 4 middle). As proposed in
ization scheme for attributes reordering.
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[20], we use a Genetic Algorithm [22] to find an optimal close path
connecting all nodes. The attribute axes are arranged in the same
order as given by the optimal path.

The procedure above provides the order in which axes should
be placed, but not the angle between axes. We adopted a simple
scheme to set the angle (αij) between axes v!i and v!j. Let W be
the sum of the weights of the optimal path found by the reor-
dering procedure (the sum of the blue edges weights in Fig. 4).
Then, the angle is given by:
B

A

C

B

A
C

B
A

C

αij ¼
2πMij

W
ð5Þ

The brute force scheme distributes the attributes
axes uniformly in the unity circle and then “swap”
their positions to find the best possible configura-
tion, as illustrated in the inline figure on the right.
Layout evaluation is performed based on layout
quality metrics. As detailed in Section 4.1, we use
topology preservation and Dunn index as quality
metrics.
Both methods are illustrated in Fig. 5 using a dataset of 500
instances clustered in 5 groups. One can see that the method
based on combinatorial optimization drastically changes the initial
configuration while the brute force scheme only switches
some axes.

Finding the optimal spacing between attribute axes is an
important feature that our method also addresses. Fig. 6 illustrates
three different approaches for accomplish this task, namely Radviz
presents axes uniformly distributed resulting in a very dense
mapping of data, DGBC is an intermediate step of DIFGBC [13]
method and iStar based on variance which make use of similarity
between attributes to set up an optimal spacing for their asso-
ciated axes. As a result of the last two, clusters were better defined
turning them easy to recognize by simple inspection, being that
iStar managed to separate the red and orange clusters even more
efficiently. The main advantage provided by iStar will be noticed
according as the number of attributes increases, as evidenced in
the following sections.
3.4. Interactive tools and visual resources

Our prototype provides a set of interactive tools and visual
resources to assist users in the visual data exploration process.

The main interactive functionalities are:
Fig. 5. Reordering a dataset of 500 instances and 11 attributes using the two propo
(b) optimization and (c) brute force mechanisms.

Please cite this article as: Garcia Zanabria G, et al. iStar (i*): A
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� Scaling allows users to change the length of attribute axes, thus
increasing or decreasing their contribution in the positioning of
instances.

� Rotation operation modifies the direction of attribute axes in
order to make particular axis more (or less) correlated with
others.

� Union allows users to group attribute axes, combining their
contribution during instance placement.

� Separation splits clusters of attributes axes so as to incorporate
their contribution to the layout.

� Removal allows users to remove axes from the layout, dis-
regarding their influence in the layout.

� Re-insertion allows users to re-insert removed dimensions.
� Position Tuning triggers the automated mechanism to arrange

attribute axes in the visual space. This functionality takes into
account only active axes or clusters of axes.

Cluster and union operations group a set of attribute axes into a
single axis. Once a set of axes has been clustered into a node, the
size of the corresponding node is increased in order to visually
convey the grouping information. Analogously, after the separa-
tion, the node size is decreased. Understanding the influence and
impact of grouped attributes in the quality of the layout is
important to assist users during their exploration. Therefore, we
provide the following visual widgets to support the analysis of
clustered attribute axes:

� Node Preview magnifies a clustered axis as a “local” Star
Coordinates visualization involving only the clustered attributes
(Fig. 7(b)).

� Node Explorer is triggered together with Node Preview as a
new panel where clusterized axes can be handled indepen-
dently (Fig. 7(c)). User interactions performed in the Node
Explorer panel such as scale and rotation, are reflected in the
main visualization.

� Quality Visualizer panel provides information about the quality
of the layout during user interaction (Fig. 7(d)). The layout
quality evolution over time is depicted using a stacked graph
metaphor [23]. The quality metrics are described in the next
section.
4. Results, comparisons and evaluation

The performance of iStar (in its three variations) is assessed
through a set of comparisons against known radial visualizations.
sed methods. (a) initial arrangement clustered in 5 groups (axes), reordering by
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More precisely, we employ two distinct metrics to quantitatively
measure the quality of the produced layout. In the following, we
describe the metrics used in our comparisons as well as the
datasets used in our experiments.
4.1. Metrics and datasets

We rely on two different metrics to assess the quality of iStar
layouts when compared against conventional RadViz, DIFGBC, and
Star Coordinates methods.
Fig. 6. Three different approaches for attribute axes spacing on Mammals dataset (DT1 in
distribution based on similarity between attribute axes (c) iStar based on variance wit
clustering step was previously performed. It can be noted that iStar shows a better da
representative number of attribute axes.

Fig. 7. An overview of iStar components: (a) Main visualization panel, (b) Node Preview m
given node as an independent visualization and (d) Quality Visualizer shows step-by-st
represents the evolution of a metric, i.e., topology preservation in yellow and Dunn ind
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Topology Preservation [24] compares rank order of neighbors
in the original and visual space. Denoting by NNjiðiA ½1; k�; jA ½1;m�Þ
and nnjiðiA ½1; k�; jA ½1;m�Þ the k nearest neighbors of instance j in
the original and visual space respectively, the rank order of each
instance j is assessed by the credit assignment:

rj ¼

3; if NNji ¼ nnji

2; if NNji ¼ nnjl; lA ½1; k�; ia l

1; if NNji ¼ nnjt ; tA ½k; s�; kos
0; otherwise

8>>><
>>>:

ð6Þ
Table 1): (a) Radviz shows a uniform spacing between axes, (b) DGBC improves this
hout user interaction uses a similar axes spacing function, however, the attribute
ta mapping in terms of cluster separation since it makes use of a lower and more

agnifies axes grouped in a given node, (c) Node Explorer details clustered axes of a
ep information about the layout quality during user interaction, each colored layer
ex in brown.
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Table 1
Datasets description and quality metrics results. Bold values indicate the best scores.

ID Name #Instances #Attr Class? #Groups Topology Preservation Dunn Index

RadViz Star Coordinates DIFGBC i* (PCA) i* (Var) i* (Ctr) RadViz Star Coordinates DIFGBC i* (PCA) i* (Var) i* (Ctr)

DT1 Mammals 200 72 ✓ 5 0.4078 0.4025 0.4812 0.4898 0.4924 0.4711 0.2599 0.2731 0.5343 0.7615 0.9870 0.3706
DT2 WDBCSTD 569 30 ✓ 5 0.0992 0.1570 0.1848 0.1917 0.2050 0.2090 0.2715 0.5132 0.2486 0.4888 0.6226 0.6209
DT3 SpamBase 1000 57 ✓ 8 0.1150 0.1368 0.1246 0.1438 0.1230 0.1371 0.1440 0.1358 0.1805 0.2178 0.1842 0.2381
DT4 texture 792 40 ✓ 6 0.2409 0.2424 0.2248 0.3429 0.3238 0.3302 0.0163 0.0282 0.0146 0.1901 0.1322 0.1026
DT5 Segmentation Normcols 2100 19 ✓ 8 0.2519 0.2292 0.2161 0.2892 0.3060 0.2827 0.0868 0.0584 0.0525 0.0866 0.0341 0.0962
DT6 ETHZ 917 3963 ✓ 8 0.1928 0.2051 0.1321 0.2425 0.1917 0.3101 0.0192 0.0284 0.0346 0.0298 0.0102 0.0321
DT7 Basketball 462 36 5 – – – – – – – – – – – –

DT8 Image database 420 384 5 – – – – – – – – – – – –

DT9 MICE 1080 80 ✓ 5 0.1156 0.1133 0.1403 0.2469 0.2766 0.2839 0.0118 0.0270 0.0367 0.0714 0.1689 0.0665
DT10 satimage 996 36 ✓ 10 0.0723 0.0666 0.1995 0.3424 0.3192 0.2890 0.0039 0.0247 0.0150 0.1273 0.1147 0.0950
DT11 All reduced 1000 63 ✓ 8 0.0503 0.0508 0.0543 0.0550 0.0526 0.0595 0.0174 0.0146 0.0170 0.0622 0.0240 0.0721
DT12 Optdigits 1000 64 ✓ 5 0.1736 0.1748 0.0761 0.1449 0.1062 0.1215 0.0493 0.0525 0.0150 0.0277 0.0517 0.0387
DT13 Movement Libras 360 90 ✓ 5 0.2370 0.2317 0.2842 0.3008 0.2832 0.2911 0.0212 0.0304 0.0194 0.0396 0.0417 0.0350
DT14 Sonar 208 60 ✓ 5 0.3316 0.3270 0.3379 0.3624 0.3267 0.3321 0.3103 0.2308 0.4310 0.4355 0.3199 0.3271
DT15 Spectf Heart 267 44 ✓ 8 0.1752 0.1676 0.2323 0.2543 0.2457 0.2512 0.0044 0.0093 0.0311 0.0414 0.0924 0.0554
DT16 Ionosphere 351 33 ✓ 10 0.2332 0.2253 0.2945 0.3648 0.3367 0.3251 0.4335 0.4670 0.1680 0.4326 0.4497 0.3080
DT17 FiberNotnorm 901 30 ✓ 10 0.3189 0.3333 0.2200 0.3300 0.2589 0.3515 0.0252 0.0177 0.0193 0.0572 0.0544 0.0673
DT18 FreeFoto 3462 128 ✓ 8 0.0474 0.0496 0.0940 0.1108 0.1009 0.1014 0.0300 0.0211 0.0143 0.0317 0.0158 0.0371
DT19 Elephant 1289 231 ✓ 6 0.0530 0.0530 0.0736 0.0907 0.0763 0.0880 0.2007 0.2136 0.0046 0.3747 0.1465 0.3084
DT20 Primarytumor 339 17 ✓ 6 0.1923 0.1898 0.1782 0.2699 0.2368 0.2043 0.0059 0.0049 0.0090 0.0343 0.0142 0.0343
DT21 Shapes 480 28 ✓ 10 0.3706 0.3576 0.3938 0.4414 0.4306 0.4265 0.0022 0.0079 0.0049 0.0184 0.0185 0.0155
DT22 Segment 2310 19 ✓ 5 0.2457 0.2254 0.2236 0.2743 0.2855 0.3684 0.0446 0.0444 0.0204 0.1072 0.1340 0.8648
DT23 Dermatology 358 34 ✓ 10 0.1872 0.2274 0.2880 0.3351 0.3509 0.3140 0.1218 0.0367 0.0649 0.1583 0.2162 0.1480
DT24 Physhing 1000 30 ✓ 5 0.0876 0.0792 0.1384 0.1864 0.1413 0.1416 0.0544 0.0437 0.3917 0.4443 0.4392 0.4150
DT25 Qsar 1055 41 ✓ 5 0.1399 0.1439 0.1612 0.2013 0.1876 0.1884 0.1887 0.0930 0.3354 0.5600 0.5050 0.5073
DT26 VEHICLE 846 18 ✓ 5 0.1573 0.1460 0.2107 0.2706 0.2832 0.2644 0.0108 0.0344 0.0653 0.0935 0.1232 0.0686
DT27 Twonorm 1000 20 ✓ 5 0.0496 0.0477 0.0800 0.0732 0.0782 0.0580 0.0471 0.0396 0.1714 0.2890 0.2482 0.1916
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Fig. 8. Automatically setting an initial configuration for a 3963-dimensional dataset with 257 instances: (a) mapping data using all dimensions, (b) clustering by PCA,
(c) reordering by optimization. In (d), a configuration slightly tuned using interactive operations is shown.
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where s is a fixed number. Typically k¼4 and s¼10. The global
topology preservation is:

r¼ 1
3mk

Xm
j ¼ 1

rj ð7Þ

The value rA ½0;1� where r¼1 is the perfect topology preservation.
Dunn Index (Du) [25] identifies clusters that are compact and

well separated. Du is defined as follows:

DuðKÞ ¼ min
i ¼ 1;…;K

min
j ¼ iþ1;…;K

DðCi;CjÞ
maxl ¼ 1;…;KdðClÞ

� �� �
ð8Þ

where dðCiÞ ¼maxx;yACi
ðDistðx; yÞÞ is the diameter of a cluster,
Please cite this article as: Garcia Zanabria G, et al. iStar (i*): A
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DðCi;CjÞ ¼minxACi ;yACj
ðDistðx; yÞÞ is the distance between clusters

and K is the number of clusters. Large values of Du(K) suggest the
presence of compact and well separated clusters.

Datasets and Test Settings.
We use 25 distinct datasets to assess the performance of iStar

when compared against traditional RadViz [8], Star Coordinates [4]
and the recent DIFGBC [13] method. Table 1 shows the datasets
and their characteristics. The datasets DT1, DT2, DT6 were
extracted from [26], DT3-DT5 from [27] and DT9-DT27 from [28].

Fig. 8 shows our proposed mechanism for data exploration,
step-by-step, on a dataset containing 3963 attributes and 257
instances.
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Fig. 9. Comparison against radial visualizations using twenty-five datasets
endowed with class information (DT1-DT6, DT9-DT27) as detailed in Table 1.
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4.2. Comparison

The metrics previously describe are used to assess the effec-
tiveness of our approach when visualizing high-dimensional data.
The conventional implementations of Radviz, Star Coordinates,
and DIFGBC are used for the sake of comparison.

Fig. 9 presents quantitative results from the Dunn Index and
Topology Preservation metrics. Box plots gather metrics values
from all datasets described in Table 1. When running iStar, attri-
butes were clustered in a drastically lower number of groups as
described in the sixth column of the Table 1. Note that all the three
variations of iStar outperformed RadViz, SC and DIFGBC visuali-
zations, showing that attribute clustering is a feasible alternative.
In fact, Fig. 9 shows that neighborhood and layout structure are
better represented when attributes are properly clustered, mainly
when using PCA and Centroid schemes. It is worth noticing that
the arrangements obtained by iStar have not been interactively
changed, therefore the results could be improved, in particular
cases, via expert user interaction.

Fig. 10 depicts qualitative results comparing iStar against Rad-
Viz, Star Coordinates and DIFGBC. Notice that the layouts auto-
matically generated by iStar tend to be similar and, in some cases,
better defined than the ones resulting from the other techniques,
showing once again that the process of grouping attributes is a
viable option. In fact, for datasets DT1, DT2, DT5, DT9 and DT10,
iStar clearly performed better than RadViz, SC, and DIFGBC. For
more intricate datasets such as DT4 and DT6 (higher dimensional
datasets), Radviz and DIFGBC tend to concentrate instances close
to the center of the layout, while SC provides more spread con-
figurations. iStar results in intermediate configurations fromwhich
users can start their interactive exploratory analysis.

4.3. Evaluation

With the purpose of verifying the statistical significance of the
variability results, we applied one-way ANOVA test with 5% of
significance level and F-Critical (FC) value of 2.277, assuming the
values obtained from the metrics are independent samples (col-
umns in Table 1). Two hypotheses are handled, a null hypothesis
which states that all population means are equal and the alter-
native hypothesis stating that at least one is different.

For the topological preservation metric, we obtained an F-
calculated (Fc) value of 2.37 with a probability of occurrence (p) of
0.043. Notice that po0:05 (5%) and FcoFC so the alternative
hypothesis is validated stating that at least one method has sig-
nificant results. For the Dunn index metric, we obtained Fc¼2.38
and p¼0.042, validating the alternative hypothesis as well. These
conclusions are supported by the boxplots in Fig. 9.

Now that the null hypothesis has been rejected, we want to
know what are the method(s) with significant difference. For this
task we have used Fisher Test which performs a comparison
between the means for each pair of methods by using a threshold
calculated with t-test. If the difference between two methods is
above their threshold then they will belong to different groups.
The methods that do not share a group are significantly different.
For both of our metrics Fisher Test divided and sorted the methods
into two groups A and B as shown in Tables 2 and 3.

For topological preservation metric (Table 2), group A contains
iStar based on PCA and Centroids methods. Group B contains SC
and Radviz methods. However, iStar based on Variance and
DIFGBC methods are in both groups, which means that these
methods do not have significantly different results from the oth-
ers. For Dunn index metric (Table 3), group A contains iStar based
on PCA, Variance, and Centroids methods. Group B contains SC and
Radviz methods. Finally, only DIFGBC method is in both groups.
Please cite this article as: Garcia Zanabria G, et al. iStar (i*): A
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Note that iStar based on PCA obtained highest mean value for
both metrics. Moreover, iStar based on PCA and Centroids were
kept on the group A for both metrics, i.e., they showed significant
difference in both cases.
5. Case study

In order to evaluate iStar in a real application, we provide two
case studies. The first case study handles a dataset containing the
performance of 462 National Basketball Association (NBA) players
during 2009-2010 season obtained from [29] (named as DT7 in
Table 1). The second case study explores a set of images containing
420 instances obtained from the Caltech 101 [30] and CBIR [31]
image databases (named as DT8 in Table 1).

On the first case study we handle data instances with 36
attributes which describe statistics about players, on/off court, and
information related to teammates and opponents. Among some of
the most relevant attributes are: points scored by the player or
team, number of possessions (offensive/defensive), number of
rebounds by the player and team (when player is off court), and
number of minutes played by the player.

Fig. 11 depicts iStar when handling DT7 data. Fig. 11(a) shows the
36 attributes and the point cloud resulting from SC mapping. The
initial 36 attribute axes visualization gives rise to a linearly spread
layout that does not reveal any prominent cluster or pattern. In the
initial configuration, length and position of the attribute axes are
uniform. Fig. 11(b) shows the layout resulting from applying iStar's
attribute clustering and reordering. Clustering has been computed
with the PCA-based scheme (number of clusters equal to 5) and the
attribute axes were arranged using the brute force mechanism.
Notice that three clusters show up in the layout, the larger one
n interactive star coordinates approach for high-dimensional
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Fig. 10. Configurations produced by RadViz, Star Coordinates, DIFGBC and iStar (variance, PCA, centroid) for the first 8 classified datasets in Table 1. For iStar results, we use
only the automatic axes grouping/reordering mechanism, i.e., no user interaction was performed. It is easy to notice that our method better discriminates the clusters when
compared against other techniques, even without the use of interaction.
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Table 2
Fisher Test for Topology Preservation metric results.

Topology Preservation

Method Mean Group

i* (PCA) 0.2542 A
i* (Centroid) 0.2480 A
i* (Variance) 0.2408 A B
DIFGBC 0.2018 A B
Star Coordinates 0.1833 B
RadViz 0.1818 B

Table 3
Fisher Test for Dunn Index metric results.

Dunn Index

Method Mean Group

i* (PCA) 0.2072 A
i* (Centroid) 0.2059 A
i* (Variance) 0.2046 A
DIFGBC 0.1160 A B
Star Coordinates 0.0980 B
RadViz 0.0952 B

Fig. 11. Visualizing a dataset containing 462 National Basketball Association (NBA) play
resulting arrangement after applying both PCA-based clustering and reordering of att
without user interaction reveal 2 clusters in most cases, and (d) final projection has di
addition, this configuration shows the Node Explorer releasing important characteristic
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placed in the center, and the other two on the bottom part of the
layout. The chart next to each attribute axis shows the attributes
clustered in that axis. Most attributes have been grouped into the
dark blue axis, indicating they are correlated. Fig. 11(c) shows
twenty different arrangements for the DT7 dataset. The top row
shows results from PCA-based clustering, while the bottom row
shows clusters generated by the variance method. Most results
reveal the presence of two main groups, whereas only a few ones
expose three clusters. In most cases, our reordering method by
brute force was applied. Fig. 11(d) illustrates some interactive
resources in action. For instance, some attributes were interactively
moved from one cluster to another, as for example the attribute
named WeightedDRebRateOnCourtMinusOffCour, which moved from
the dark blue to the blue axis. Scaling and rotation operations were
also interactively performed to better discriminate the three clus-
ters. The zoomed disks show the Node Explorer widget depicting
the content of clustered axes. We highlight two clusters with rele-
vant information to be reported. In the blue disc, we see that the
green cluster is isolated from the rest, revealing that the attribute
WeightedDRebRateOnCourtMinusOffCour is very relevant for that
cluster. More precisely, the attribute says that players in the green
cluster performed a considerable number of rebounds for their
team when those players were on court, but a lower number of
ers during 2009–2010 season. (a) projection of the entire set of attributes, (b) the
ributes, (c) 20 other possible projections using PCA and Variance iStar variations
scovered a new well-defined cluster after perform some interactive operations, in
s of the data in each node.
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Fig. 12. Exploring 6 different states on the Quality Visualizer widget during user interaction for a color images collection (DT8 in Table 1). Each colored layer represents the
evolution of a metric: topology preservation in yellow and Dunn index in brown.
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accumulative rebounds for themselves since the SimpleDRebRate
attribute (individual rate of defense rebounds) has not strongly
influenced in their position in the layout. The purple disc magnifies
attributes related to off court. The green cluster is now located on
the top right part of the layout. It is easy to see that the green group
of players have a large value of WeightedMinOffCourt and Weight-
edPossForOffCourt, meaning long periods and possessions off court.
Finally, in the green disc, the green group of players is located near
the center of the layout, meaning poor performance for SimpleOR-
ebFor (accumulative number of offensive rebounds) and Adjus-
tedPMStdErr (relevance of the player for his team on game).
Therefore, those players presented a good performance with very
little contribution for their teams during the season.

Among the players in the green group we find famous players
such as Blake Griffin, who had been selected from the draft 2009
but he missed the entire season due to a surgery, Ming Yao who
did not play the entire season, Brandan Wright who underwent
shoulder surgery and missed most the season, and Quincy Douby
who was released by the Toronto Raptors but he did not play
any match.

The second case study aims to evaluate iStar's effectiveness
when visualizing classified color images. In this context, each data
instance has 384 attributes describing color moments of images
with dimensions 256x256. The images were split in 64 blocks,
each block providing color means and standard deviation as
attributes for each RGB channel. Contrary to the first case study,
Please cite this article as: Garcia Zanabria G, et al. iStar (i*): A
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this dataset has class information, thus grouping instances as:
Firewalls(100), Dinosaur(100), Grass(120) and Cars(100).

Fig. 12 shows the stacked graph resulting from 31 layout quality
measures computed during the visual analytics process. The pur-
ple disc shows the layout in the very beginning of the exploratory
process, which has been automatically generated via PCA attribute
clustering and variance reordering. Notice that instances are
divided in three groups: the bottom left containing images of
Dinosaurs; the central group with images from Grass class and the
right group containing a mixed of Cars and Firewalls images. The
blue disc on the top left shows the layout in the first stage of the
exploratory process, where instances tend to be divided into two
groups: Dinosaurs and Firewalls. The disc on the bottom center
shows one of the worst scenarios where instances are gathered on
two groups: the Dinosaurs group (bottom right) and a large group
(center) containing images from three different classes. The
remaining disks on the top center and on the right show good
quality layouts according to the quality metrics and clearly
revealed by the stacked graph quality visualization widget. One
can see that those layouts are compact while well separating the
instances from the different classes.

The finds described above show the usefulness of iStar as a visual
analytics tool. Attribute clustering, layout quality visualization and
the interactive resources implemented in iStar turned out to be
effective, making iStar an interesting alternative for Star Coordinates
based data exploration.
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6. Conclusion and future work

In this paper we presented iStar, a Star Coordinates based
visualization technique that relies on attribute clustering, axes
reordering, and interactive resources to handle data with a large
number of attributes. Provided comparison shows that iStar out-
performs conventional Star Coordinates and RadViz visualizations.
Moreover, the provided case studies show the effectiveness of iStar
as a visual analytics technique. The traits endowed in iStar render
it an interesting alternative for visual analytics tasks through Star
Coordinates plots.

As a future work we will focus on layout enrichment schemes
as proposed in [32] and [33] in order to make radial visualization
layouts more informative, conveying gist information to assist
users in the visual analytics process.
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