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Recent advances in high-performance computing 
have helped produce huge amounts of data at a very 
fast rate. But the relative speeds of data analysis and 
exploration, especially in scientific disciplines, have 

been disproportionately low. For example, using a modern 
supercomputer, it only takes a few days to produce terabytes 
of scientific simulation output data, but it then takes weeks 
or months of tedious scripting for domain scientists to per-
form analysis and exploration. Richard Hamming famously 
said, “The purpose of computing is insight, not numbers” 
(https://en.wikipedia.org/wiki/ Richard_Hamming). But 

most current scientific data analysis tools have focused ex-
clusively on the data scalability problem and not so much on 
the complexity and variety of the data space that affect the 
process of deriving insights from the data. 

In domains such as biology and climate, many sci-
entists still adopt manual, time-consuming data analysis 
processes or use tools that don’t tightly integrate interac-
tive and analytical capabilities. To let domain scientists 
analyze, explore, and synthesize insights from large simu-
lation data, there’s a need for new techniques and ana-
lytical abstractions that will significantly speed up the 
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analysis through an  iterative, human-in-the- 
loop process.

We term this discrepancy between the rela-
tive speeds of data generation and analysis as an 
analytical bottleneck for domain scientists (see 
Figure 1). In this article, we present evidence from 
cross-domain collaborations between visualization 
researchers and climate scientists about the success-
ful use of interactive visualization to reduce this 
bottleneck. We also comment on the opportunities 
and open challenges that aren’t just unique to the 
visualization of climate model data but generaliz-
able across many disciplines.

Climate Science Background
Climate scientists generate mathematical models 
for simulating physical processes (see Figure 2).1–4  
There is inherent uncertainty and disagreement in 
the parameterization of these models and in under-
standing their effects on outputs. However, gaug-
ing consensus among model outputs is critical for 
achieving high accuracy about prediction of en-
vironmental events, climate change patterns, and 
so on. The Holy Grail in climate science is to un-
derstand why certain choices of parameterizations 
produce similar or different model outputs and 
how these parameterizations affect the quality of 
the outputs in terms of agreement with observation 
data. The work reported here is based on a collabo-
ration among a group of visualization researchers 
(henceforth referred to as we) and climate scientists 
as part of the Multi-scale Synthesis and Terrestrial 
Model Inter-comparison Project (MsTMIP; http://
nacp.ornl.gov) and the US National Science Foun-
dation (NSF)–funded DataONE (www.dataone.
org) initiative. All our collaborators have at least 10 
years of experience in climate modeling. MsTMIP 
is a formal multiscale synthesis, with prescribed 
environmental and meteorological drivers shared 
among model teams and simulations standardized 
to facilitate comparison with other model results 
and observations through an integrated evaluation 
framework.

State of the Art
Climate scientists aim to pursue key scientific 
questions by running model simulations. By 
leveraging high-performance computing tech-
niques, these simulation runs can produce 
terabytes of data very quickly. But using state-of-
the-art techniques, data analysis usually takes a 
large amount of time as they don’t allow for rapid 
iteration or provide analytical support for quickly 

finding patterns of interest. Many current tools 
are hypothesis-driven, meaning they allow scien-
tists to pursue a specific hypothesis by perform-
ing certain computational or visualization tasks, 
but they lack the flexibility to provide different 
perspectives into the data—examples of such 
tools include UV-CDAT5 and Paraview.6 The 
large analysis time is thus caused not only by the 
scale but also by the complexity of the simulation 
data: these models generally produce tens of out-
put variables varying over different scales of space 
and time, and the models’ internal structure is de-
fined by hundreds of parameter values. Scientists 
want to analyze where, when, and at what scales 
of space and time the model outputs are similar or 
different and then reconcile those similarities and 
differences in outputs with various parameteriza-
tion choices.

The complex nature of climate modeling data 
thus necessitates cutting-edge analytical meth-
ods for interactive subsetting of the data and 
rapid exploration of alternative hypotheses on 

Figure 1. Reducing the analytical bottleneck in scientific data analysis 
through iterative exploration of large-scale data. In comparing (a) the state of 
the art and (b) a bottleneck reduction, we see the time taken for analysis and 
deriving insights being significantly reduced, leading to a richer exploration 
of alternative hypotheses on the fly, and consequently, a faster and greater 
return on investment of analysis time for domain scientists.
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the fly, thereby reducing analysis time. Research-
ers have argued for the need to develop data-
driven  analytical methods7 that can complement 
hypotheses-driven scientific analysis methods. 
It’s in this context that we define the analytical 
bottleneck.

The Analytical Bottleneck
Current visualization tools are good at letting 
scientists pursue known questions by perform-
ing statistical analysis on interesting model out-
puts and parameters. However, even to reach a 
point where scientists find an interesting pattern, 
they have to navigate a large, complex search 
space. For example, aerosols, clouds, and atmo-
spheric motions interact with each other through 
hundreds or thousands of different physical and 
chemical processes that span a wide range of spa-
tial (from nanometers to the size of the Earth) 
and temporal (from fractions of a second to 
millennia) scales. To add to the complexity, the 
number of parameters in state-of-the-art climate 
models is large (on the order of hundreds), with 
varying effects on the outputs, which are often 
difficult to quantify.

The main analytical task is to sift through 
different sets and combinations of these data at-
tributes or facets and detect patterns hidden in a 

subset of these facets. Traditional hypothesis-driv-
en methods and tools are inadequate to handle the 
complexity of these multiple combinations, where 
scientific questions often depend on the explor-
atory analysis process. In scenarios where scientists 
pursue unknown unknowns,8 these tools don’t 
support rapid exploration of alternative hypoth-
eses. The analytical bottleneck is caused by three 
main inadequacies in current analysis tools: the 
ability of scientists to easily convert their high-
level analysis goals into the visualization interface 
through interactions, the lack of multiple perspec-
tives into the data as scientists often need to look 
at different views before reaching their conclusions, 
and rapid, dynamic exploration of different hy-
potheses in which the system adapts to the interac-
tions, proactively searches for interesting patterns, 
and helps scientists in narrowing down their visual 
search process.

Impact of Visualization
As Figure 2 shows, a climate scientist’s workflow 
comprises three distinct stages: exploration of high-
dimensional parameter and output spaces, analysis 
of causal relationships between inputs and outputs, 
and synthesis and communication of key insights 
about model performance. Here, we describe the 
impact of our research in these areas.
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Figure 2. Our collaborative research on climate data visualization for exploration1 and analysis2,3 of model simulation data and visual 
communication4 of scientific insights demonstrated how incorporation of interactive visualization in the scientific data analysis pipeline 
can help reduce the analytical bottleneck. 
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Exploration of Multifaceted Model Data
Data objects can often be described by multiple 
facets—for example, patient data can be described 
by demographics, disease symptoms, treatment 
and prognosis history, and so on. Similarly, climate 
models can be described by space, time, outputs, 
parameters, and so on.

Understanding similarity relationships across 
heterogeneous facets is challenging, so we devel-
oped a multifaceted visual exploration tool called 
SimilarityExplorer1 to help scientists understand 
the similarity of model outputs at different scales 
of space and time (see Figure 3) and with differ-
ent combinations of output variables. By explicitly 
encoding9 spatial and temporal correlations among 
models, the tool lets scientists identify similar out-
puts at different scales of space and time. One of 
our collaborators commented that “this would al-
low them to develop hypotheses on performing 
additional experiments” and that “the free-style 
nature of the exploration lends well to shift from 
one variable to another and support root-cause 
analysis.”

Analysis from Multiple Perspectives
We developed a visual reconciliation technique2 to 
help scientists detect correlations across input pa-
rameters and temporal outputs. As Figure 4 shows, 
an iterative refinement strategy lets them dynami-
cally create, modify, and observe the interaction 
among groupings, thereby making the potential 
explanations apparent. The strength of the visual 
reconciliation technique is in the tight integration 
of an underlying optimization component with a 

visual feedback mechanism that guides scientists 
toward potential groupings of interest. Regard-
ing the effectiveness of the reconciliation tech-
nique, another collaborator observed that “one of 
the most valuable functions of the technique is to 
effectively remove from consideration the compli-
cations  created from model structures that have 
little to no effect on outputs, and to effortlessly 
show and rank the differential effects on output 
created by seemingly related or unrelated model 
structures.”

In addition, given that climate models can be 
seen as high-dimensional scalar functions, we de-
veloped a topology-based method to help climate 
scientists understand and explore the differences 
between models directly in the high-dimensional 
domain.3 We introduced the concept of maximum 
topology matching to identify similarities and dif-
ferences between a given pair of models. Further-
more, we designed a visualization interface that lets 
scientists explore models using their topological 
features to study the differences between pairs of 
models (see Figure 5).

Communication of Scientific Insights
Climate scientists commonly use various script-
ing languages to produce their own visualizations 
for either probing the data or using the visualiza-
tion to publish and disseminate their results to a 
wider audience. However, our initial interactions 
with the scientists revealed that many existing vi-
sualization practices in their domain don’t obey 
visualization best practices and perceptual de-
sign principles. This is especially true when these  

Figure 3. SimilarityExplorer enables multiscale exploration of spatiotemporal model similarity by letting scientists quickly and flexibly 
explore where and when multiple model outputs are similar and verify their hypotheses on the fly.
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visualizations are used to communicate scientific 
insights from exploration and analysis. To sys-
tematically investigate how the state of the art 
can be improved, we collected common examples 
of data visualizations (line charts, geographical 
maps, and scatter plots) designed by climate sci-
entists, and in tight collaboration with them, we 
developed a taxonomy of design problems. Sub-
sequently, we used the  taxonomy to develop solu-
tions for common design pitfalls and performed 
qualitative evaluation of our solutions by getting 
their feedback. 

In the process, we also reflected on differences 
in opinion about design problems between visual-
ization researchers and climate scientists, and the 
possible causes for such differences, before distill-
ing a few design guidelines that can be used across 
different science disciplines where domain experts 
design visualizations as part of their daily routine.

Criteria for Reducing the  
Analytical Bottleneck
The tools and techniques we developed aim to 
address the analytical needs of climate scien-

tists with the design principles of information 
visualization10,11 and visual analytics.12 We ac-
complished this through interview sessions, par-
ticipatory design processes, and both qualitative 
and quantitative studies for evaluating our tools. 
Our collaborators consider our work as a signifi-
cant contribution to the state of the art in climate 
science. The feedback and responses we received 
were largely positive and hold much promise for 
the future. From our collaboration, we distilled 
four  criteria that visual interfaces should fulfill to 
reduce the analytical bottleneck. Here, we define 
these criteria and provide examples of how they 
can be practically implemented by providing ex-
amples from our tools.

Flexibility
A visualization tool for climate scientists should be 
flexible enough for interactive subsetting through 
different combinations of space and time scales 
and for providing multiple seeds as points for 
starting an analysis. Climate scientists often start 
with a specific hypothesis but require flexibility 
in slicing and dicing through the space-time data 
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cubes that climate models represent. This is espe-
cially relevant when they want to compare global 
climate patterns with regional anomalies along 
different time scales, such as annual, monthly, or 
weekly patterns of interest. They also want to be 
flexible in the way they define relationships among 
different models. 

Accordingly, SimilarityExplorer defines simi-
larity among climate models based on both spatial 
and temporal correlations, enabling scientists to 
look at both pairwise and overall similarity across 
all models. Once scientists look at global similar-
ity among models, they can drill down into the 
different space and time scales of interest dynami-
cally through interaction. With the visual rec-
onciliation technique2 scientists could steer the 
analysis process from two seed points: similarities 
in temporal model outputs and characteristics of 
the parameter space. Such flexibility gave them 
the freedom to explore model facets from dy-
namic perspectives according to their changing 
hypotheses.

Efficiency
We define efficiency in terms of how fast insights 
can be generated from data, not in terms of how 
fast data can be processed. While the latter is cer-
tainly a precursor for high analytical efficiency, 
we assume that the analysis is being carried out 
in a high-data-throughput environment. Such ef-
ficiency is a result of scientists being able to quickly 
detect interesting patterns among a large number 
of possible combinations of data attributes. Even in 
very large datasets, meaningful patterns lie hidden 
only among a subset of combinations of records 
and attributes. For example, the climate model 
data we used has binary parameters. A model 
structure is a function of these parameters, so if 
there are c criteria, there can be 2c combinations of 
this function. 

Climate scientists don’t have an objective way 
of choosing one set of criteria over another, which 
can influence the output. The visual reconcilia-
tion technique enabled them to efficiently search 
through these exponentially large possible combi-

Figure 5. Exploring MARS model using a topology-based method. A scatter plot denotes the similar and dissimilar extrema of a given 
pair of functions, and parallel coordinates represent the location of extrema of interest in the high-dimensional predictor space.3
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nations and judge their effects on outputs. While 
using SimilarityExplorer, the scientists could get 
a quick overview of the spatiotemporal behavior 
of the outputs, and by applying the reconciliation 
technique, they could diagnose the causes for the 
similarity and discrepancies among multimodel 
output behavior. 

Serendipity
Many important scientific inventions are based 
on serendipitous discoveries. In this context, we 
posit that scientific data analysis tools should be 
designed with an explicit goal of facilitating such 
data-driven discovery by allowing scientists 
to  pursue alternative hypotheses and steer the 
analysis process for discovering the unexpected12 
while the system proactively suggests interesting 
patterns. In the context of climate model data 
analysis, our goal was to design systems with an 
integration of analytical components and interac-
tive visualization, such that scientists can verify 
their known hypothesis and also explore alterna-
tive hypotheses on the fly by exploring unknown 
unknowns. 

Both the visual reconciliation and topologi-
cal data analysis techniques allowed scientists 
to detect patterns that weren’t possible using 
manual data analysis or state-of-the-art analysis 
tools. This utility was reflected in multiple posi-
tive comments such as, “Looking at models this 
way is interesting for me. With our current tools, 
we wouldn’t have otherwise known that it was at 
high values of mean-summer that the models dif-
fered, and that might be of interest in an in-depth 
study.” We’re currently working with our collabo-
rators in an ecological data analysis context that 
further investigates the implications of the results 
obtained.

Effectiveness
In our experience of collaborating with the climate 
scientists, we observed that the effectiveness of the 
techniques we developed mainly depended on two 
factors: the degree of transparency to which the 

automated methods are integrated within visual 
analytics methods, and the optimality of the visu-
alization design. 

In the first case, while developing the Simi-
larityExplorer tool and the reconciliation and to-
pological data visualization techniques, scientists 
were skeptical of the analysis outputs when data 
transformation in an analytical method either 
wasn’t known to them or they couldn’t control the 
process. Therefore, in SimilarityExplorer, we used 
custom-defined distance functions such as spatial 
and temporal correlations and exposed the effects 
of the individual output variables, rather than 
combining them to produce a multidimensional 
projection.

In the second case, through our interviews 
and qualitative and quantitative studies, we found 
that scientists tend to use the same visualizations 
for communicating their results to a wider audi-
ence that they would normally use for their own 
analysis process. As we showed in a previous 
work,4 common design pitfalls such as improper 
choice of visual variables, color maps, or compari-
son techniques affect the amount of insight that 
can be gained from visualizations. Currently, we’re 
extending our work to conduct a quantitative 
study on the use of color maps for climate data vi-
sualization. The goal here is to study whether per-
ceptually motivated color maps are more effective 
in common climate data analysis tasks than the 
more traditionally used color maps in the climate 
science domain.

Open Issues and Challenges
Several open issues and challenges weren’t fully 
explored in the course of our collaboration. These 
issues not only apply to climate data visualiza-
tion but can be generalized across other scientific 
disciplines.

Task Abstraction
One of the recurring challenges in our collabo-
ration was to develop a task abstraction model 
that can be used to develop tools and techniques. 

We observed that the effectiveness of the techniques we developed 
mainly depended on two factors: the degree of transparency to which 
the automated methods are integrated within visual analytics methods, 
and the optimality of the visualization design.
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Although we used results from interviews and 
mapped them to existing task taxonomies, we can 
pursue other promising directions, such as for-
mally establishing the role of a visualization liai-
son,13 someone who can significantly accelerate the 
process of narrowing down a set of tasks via visual 
interfaces. Such task abstraction is also useful in 
cases where metrics must be developed to optimize 
the visual search process,14 especially for complex 
scenarios such as multivariate, spatiotemporal, sci-
entific data analysis.

Trust-Augmented High-Dimensional  
Data Analysis
Many automated pattern detection methods be-
come ineffective when applied to data with high 
dimensionality, becoming black boxes that do-
main experts don’t completely trust.8 To facilitate 
a more transparent analysis process, we’ll explore 
open areas of research in high-dimensional data  
visualization15 by developing and applying pro-
mising techniques such as subspace search16 and 
topology-based analysis of climate model data. 
Subspace clustering methods can be leveraged 
to suggest interesting variable combinations and 
let scientists visually search and detect relevant 
subspaces. Spatiotemporal behavior of these 
subspaces can be exposed through topological 
methods.

Uncertainty Handling
Visual representation of uncertainty along mul-
tiple dimensions is another open area of visualiza-
tion research. We’ll leverage and extend existing 
research on uncertainty visualization17,18 by de-
vising novel visual representations of parametric 
uncertainty integrated with analytical methods 
for iterative  sensitivity analysis. A lot of progress 
has been made in uncertainty visualization, but 
this still remains an open issue across various 
domains.19

Dissemination of Scientific Knowledge
Despite their promise, visualization techniques 
haven’t been used extensively to communicate 
scientific insights.20 By leveraging the theoretical 
framework developed in our earlier work, and de-
veloping interactive visual narratives21 about model 
fidelity, scientists will be able to complete the loop 
in their analysis process, exploring uncertainty 
and sensitivity of model parameters and outputs, 
evaluating model fidelity, and then tracing back 
the causes of infidelity to uncertainty levels and 

parameterization. This will lead to broader dis-
semination of scientific results through the use and 
adoption of visual narratives, leading to engage-
ment across a wide range of audiences and poten-
tially influencing climate change policies through 
such dissemination.

A lthough the definition of big data can vary 
across different stakeholders, we undeniably 

live in an era of complex heterogeneous data, 
and generating the value out of such data neces-
sitates novel data science methods. In the course 
of our collaboration, we found that traditional 
and evolving data science domains are still dis-
connected: domain scientists are often skepti-
cal of using automated data mining or machine 
learning methods, whereas data scientists are of-
ten unable to understand the analytical needs. 
We believe that interactive visualization and 
visual analytics will play a key role in bridging 
these diverse areas by bringing more transpar-
ency and flexibility into analysis processes. That 
said, more collaborative efforts are necessary 
to completely bridge the gap, and we hope our 
work inspires future collaborations by providing 
a starting point. 
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