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Abstract
We investigate how to automatically recover visual encodings from a chart image, primarily using inferred text elements. We
contribute an end-to-end pipeline which takes a bitmap image as input and returns a visual encoding specification as output.
We present a text analysis pipeline which detects text elements in a chart, classifies their role (e.g., chart title, x-axis label,
y-axis title, etc.), and recovers the text content using optical character recognition. We also train a Convolutional Neural
Network for mark type classification. Using the identified text elements and graphical mark type, we can then infer the encoding
specification of an input chart image. We evaluate our techniques on three chart corpora: a set of automatically labeled charts
generated using Vega, charts from the Quartz news website, and charts extracted from academic papers. We demonstrate
accurate automatic inference of text elements, mark types, and chart specifications across a variety of input chart types.

1. Introduction

Charts and graphs are commonly used to present quantitative in-
formation. They are pervasive in scientific papers, textbooks, eco-
nomic reports, news articles and webpages. In many cases these
visualizations are the only publicly available representation of the
underlying data. When well-designed, visualizations leverage hu-
man visual processing to convey information efficiently and effec-
tively. But, such depictions are not designed for machine consump-
tion. While people can readily decode data in charts and graphs,
machines cannot directly access them. This is unfortunate, as cen-
turies of publications (both printed and online) depict data visually.
A vast store of information is locked inside visualizations. The lack
of machine readability hinders analysis, reuse and indexing.

Prior work on computational interpretation of chart images typi-
cally assumes all text localization and content as given, relying on
manual annotation or optical character recognition (OCR) engines
that perform poorly on chart images. We present an automated end-
to-end system that performs specialized text localization and ex-
traction for chart images, and uses inferred text elements to recover
visual encodings. Given a bitmap image as input, our system re-
turns a chart specification as output (sketched in Figure 1).

Our primary contribution is a text analysis pipeline that iden-
tifies text elements in a chart image, determines their bounding
boxes, recognizes the text content using OCR, and classifies their
role in the chart (e.g., chart title, x-axis label, y-axis title, etc.). We
also train a Convolutional Neural Network that classifies the type
of graphical mark used to encode data in a chart (e.g., bars, lines,
points, or areas). Together, we leverage the inferred text and chart
type information to recover a visual encoding specification in a
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Figure 1: Inferring a visual specification from a chart image. Given
a bitmap image as input, we seek to recover visual encodings for
purposes of indexing, search, and retargeting.

declarative grammar similar to Vega-Lite [SMWH17] or Tableau’s
VizQL [STH02]. This chart specification can then be used for in-
dexing, search, or retargeting of the input visualization.

We evaluate our techniques on three chart corpora: a set of au-
tomatically annotated charts generated using the Vega language,
charts from the Quartz news website, and charts extracted from aca-
demic papers in the field of computational linguistics. We demon-
strate accurate automatic inference of text elements, content and
chart specifications across a variety of input chart types. For text
localization and OCR, we achieve minimum F1-scores of 80%; for
both text role and mark type classification, we achieve a minimum
F1-score of 98%. We share examples of successfully recovered
chart specifications and discuss recurring error cases. We conclude
with a brief discussion of visualization applications enabled by our
automated chart interpretation pipeline.
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2. Related Work

Our work draws on prior research in the areas of text localization
and computational chart interpretation.

2.1. Text Localization and Optical Character Recognition

Text localization and recognition in documents have been investi-
gated extensively over the past decades. State-of-the-art tools in-
clude Microsoft OCR [mic] and Tesseract [Smi07]. Localization
for natural images has also been studied (e.g., photos, Google Street
View) [HLYW13, NM16]. However, these methods do not achieve
acceptable accuracy on chart images. Siegel et al. [SDF16] report
an F1-score of 60.3% using Microsoft OCR on a corpus of aca-
demic charts. In this paper, we evaluate the same service across
three chart corpora and obtain F1-scores ranging from 44% to 61%.

Other text localization attempts for chart images usually follow
a bottom-up, region-based approach: find connected components
and merge them according to rules such as proximity. Huang and
Tan [HT07] separate text and graphical elements using this ap-
proach; however, they focus on the graphical elements and man-
ually fix OCR failures. Jayant et al. [JRW∗07] and Böschen and
Scherp [BS15] include additional steps to infer the text orientation.
These techniques assume that geometric relationships among con-
nected components are sufficient to suppress false positives. Based
on our experience using a larger data set with charts from multi-
ple sources, we found this assumption to be faulty. Our approach is
more robust, for example by using a Convolutional Neural Network
to first identify and remove non-text pixels.

2.2. Computational Chart Interpretation

There are two basic component types in a chart image: text and
graphical elements. In order to successfully deconstruct a visual-
ization, one must be able to recognize both. However, most prior
work focuses on graphical elements. Harper and Agrawala [HA14]
present a system for deconstructing D3 [BOH11] visualizations
that extracts data, marks and mappings between them. The tech-
nique exploits the fact that one can access both SVG elements and
data directly in the web browser. We similarly aim to recover visual
encoding specifications, but for static chart images, which are both
more common and more difficult to interpret.

Multiple systems attempt to classify chart images, identify
graphical marks and recover the underlying data. Huang and
Tan [HT07] describe a mark extraction method for vectorized
graphic marks, which can be difficult to obtain from bitmap images.
Savva et al. [SKC∗11] introduce ReVision, a system to classify
bitmap chart images and extract data from pie charts and bar charts.
Using ReVision, Kong and Agrawala [KA12] demonstrate how to
add interactivity to static pie and bar charts. Siegel et al. [SDF16]
and Choudhury et al. [CWG16, RCWG16] present techniques to
extract data from line charts using bitmap and vectorial images, re-
spectively. Jung et al.’s ChartSense [JKS∗17] uses a semi-automatic
approach to extract data from line, pie and bar charts, while Méndez
et al.’s iVoLVER [MNV16] relies on manual annotation to extract
data and encodings. In all these cases, the researchers treat the text
localization and content as given. In contrast, we perform accurate
inference of text elements from bitmap input.
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Figure 2: Text role labels, shown for a Vega-generated scatter plot.

Text role classification (e.g., identifying axis labels, legend la-
bels, titles, etc.) was also explored by Huang and Tan [HT07].
They use spatial relationships between text and graphical elements
to generate feature vectors, but again require vectorization of the
chart. In DiagramFlyer, Chen et al. [CCA15] use feature vectors
based only on text bounding boxes. Choudhury et al. [CWG16] use
text bounding boxes and also text content. We follow a similar ap-
proach, but do not incorporate text content, as it may propagate
OCR errors. Instead, we exploit structural information such as the
alignment and grouping of text boxes. Siegel et al. [SDF16] pro-
pose a two step technique to classify text. First, they scan for verti-
cally or horizontally aligned boxes (with numeric content) to infer
axis labels. Next, legends are classified using a feature vector with
geometric information. The first step makes several assumptions,
such as axes anchored on the bottom-left side, restricting its use.

Mark type classification has been studied in multiple prior
projects. In ReVision, Savva et al. [SKC∗11] sample image patches
to learn visual “bag of words” features for a Support Vector
Machine (SVM) classifier. Both FigureSeer [SDF16] and Chart-
Sense [JKS∗17] use Convolutional Neural Networks (CNNs) for
classification. We similarly use a CNN and demonstrate superior
performance to ReVision and ChartSense.

To the best of our knowledge, no prior work has produced an
end-to-end system that accurately extracts text information from
bitmap chart images to recover visual encoding specifications. The
closest works (FigureSeer [SDF16] and ReVision [SKC∗11]) as-
sume that text information is given a priori.

3. Data Collection and Generation

We use training and test data drawn from three corpora: a combina-
tion of automatically generated charts (using Vega [SRHH16]) and
manually annotated charts from 3rd party sources (Quartz news and
academic papers in computational linguistics). Automatic genera-
tion using Vega allows us to create an arbitrarily large data set that
systematically varies the visual encodings. Given Vega’s underly-
ing use of D3 [BOH11], the resulting images mirror many charts on
the web. The other corpora consist of real-world charts used online
(Quartz) and in print (academic papers).

For each image, our data includes the bounding boxes and tran-
scribed content of all text elements. Each element is labeled with its
role, drawn from the label set in Figure 2. Figure 3 shows examples
from each corpus; Table 1 tallies images by corpus and type.

c© 2017 The Author(s)
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(a) Vega Charts (b) Quartz (c) Academic Papers

Figure 3: Examples chart images from the (a) Vega, (b) Quartz, and (c) Academic Papers corpora.

Vega Charts Quartz Academic Papers

Area Charts 477 0 1
Bar Charts 1,358 191 57
Line Charts 360 283 248
Scatter Plots 2,123 1 26

Total 4,318 475 332

Table 1: Chart Corpus Statistics.

In this work, we make some simplifying assumptions to con-
strain the chart types considered. First, we assume there are no
composed figures with multiple plots; prior work by Lee and
Howe [LH15] focuses on the specific problem of segmenting com-
posed figures. Second, we assume that plots are not layered. For
instance, we do not yet support dual axis charts, or those with mul-
tiple mark types (e.g., Pareto charts). Finally, we assume a Carte-
sian coordinate space, which still affords a variety of chart types
such as bar charts, line charts, scatter plots and area charts.

3.1. Vega Charts (VEG)

Our first corpus consists of chart images generated using the Vega
visualization grammar [SRHH16] and associated tools. We devel-
oped a system that takes a data table as input and outputs a set
of chart images and annotations. We use the Compass recommen-
dation engine (part of Voyager [WMA∗16]) to generate charts vi-
sualizing combinations of 1-3 data variables, filtered according to
perceptual expressiveness criteria. We applied this process to 11
data sets, resulting in 5,542 Vega specifications. To increase the
variability of our chart images, we randomly selected values for
fonts, font size, presence of grid lines, and legend & axis posi-
tions from a curated set of options. We then reviewed the results
to remove problematic instances — such as charts with interior leg-
ends that occlude data and aggregate plots with only a single data
point — leading to 4,318 charts. Finally, for each chart we analyzed
Vega’s scenegraph to automatically extract text bounding box and
role labels. Figure 3(a) shows examples from this corpus. A full,

replicable description of our generation procedure and data sets is
included in supplemental material (Appendix A).

3.2. Quartz (QTZ)

Our second corpus contains chart images from the news website
Quartz (http://qz.com/). All visualizations in Quartz’s ar-
ticles are available in SVG format from the Atlas search engine
(https://www.theatlas.com/). We implemented a crawler
to retrieve all charts from Atlas. We collected 500 SVG files and
excluded 25 (5%) that did not satisfy our assumptions. Figure 3(b)
shows images from this corpus; most of these images are line and
bar charts (Table 1). We then processed the SVG files to extract text
elements. Though we can trivially parse the SVG structure to ex-
tract text, we must still refine the bounding boxes and assign a role
to each element. For example, if an axis title is composed of two
words specified as separate text elements, we must merge them.
To accelerate manual labeling, we created a graphical interface to
display the charts and overlay text bounding boxes. The interface
supports operations such as adding, deleting, merging and resizing
boxes, as well as assigning role labels to each (Appendix B).

3.3. Academic Paper Figures (ACA)

Our third corpus is composed of chart images extracted from scien-
tific documents. In particular, we downloaded 21,142 papers from
the ACL Anthology repository, which includes a large number of
published charts from a single, coherent domain. To extract figures
from source PDF files, we used the pdffigures [CD16] utility,
which outputs a JSON document with figure location, text location,
text rotation, and text content information. We extracted 26,134 im-
ages and selected an initial random subset of 500 images for parity
with QTZ. However, we found that more than 50% of the figures
lay outside our current scope (e.g., general diagrams, workflows,
syntactic trees, tables). We removed these figures and randomly se-
lected more figures; after two iterations, we had a set of 350 figures.
We decided to work with this subset once we stopped seeing new
chart designs. As with the Quartz corpus, we used our annotation
interface to manually refine bounding boxes and assign role labels.

c© 2017 The Author(s)
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(a) Bitmap Image (b) Word Detection (c) OCR (d) Merge Words (e) Text Role Classification
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Text Localization and Recognition

Figure 4: Text analysis pipeline. (a) Initial bitmap image. (b) Identify bounding boxes for words; note that some boxes are incorrect. (c) Use
OCR to recover text for each box. (d) Merge words in lines. (e) Use geometric features of bounding boxes to classify their role in the chart.

In this step, we discovered charts with very low resolution and oth-
ers with Chinese text. We removed these, leaving us with 332 total
annotated images. Figure 3(c) shows examples from this corpus.

4. Text Localization and Recognition

Figure 4 summarizes our text analysis pipeline, which given an in-
put image outputs a set of labeled text elements. In this section, we
present techniques for locating and extracting text content (steps b,
c and d in Figure 4). We first detect candidate words to produce a
set of bounding boxes. We then individually apply OCR to these
boxes to extract text content, and use OCR confidence values to fil-
ter erroneous non-text boxes. Finally, we merge adjacent boxes to
consolidate multi-word phrases and titles.

Unlike prior work that applies a strong filter to candidate words
in the initial steps, we use multiple weak filters across text pixel
prediction, word detection, and OCR to minimize errors that might
propagate through the pipeline. We only discard a box once we are
highly confident that it is not text.

4.1. Word Detection

To detect candidate words in chart images, we first identify likely
text pixels and remove non-text pixels. This initial pass removes
elements that can confuse standard region-based text localization
methods, which we then apply. We also leverage the assumption
that letters in words should have the same color.

Preprocessing: In order to standardize chart images, we perform
some preprocessing steps. First, we resize images, preserving as-
pect ratio, so that they fit within a rectangle of 1200×1200 pixels.
Then, we binarize the image using a global threshold approach.
The optimum threshold is calculated using Otsu’s method [Ots79],
which assumes that pixels belong to two classes and attempts to
maximize the inter-class variance. Figure 5(a) shows the binary im-
age of the area chart shown in Figure 4(a).

Text Pixel Classification: In this stage, we remove pixels that do
not correspond to text. We use Darknet [Red16], a Convolutional
Neural Network (CNN) framework written in C and CUDA. Dark-
net includes a network for predicting text pixels, trained using 500k
figures from scientific papers (arXiv, Pubmed and ACL Anthol-
ogy). The network takes as input a 256×256 pixel image and out-
puts a 64× 64 heatmap of text pixel probabilities [Mor17]. To re-
move text, we resize the output heatmap back to the original size,

(a) Binary Image (b) Text Pixels (c) Conn. Comps.

(d) Characters (e) MST (f) Words

Figure 5: Word detection process. (a) Initial binarized image. (b)
Clean image with non-text pixels removed. (c) Connected compo-
nents. (d) Filter region candidates using geometric properties. (e)
Minimal Spanning Tree using boxes as vertices and distances as
edges weights. (f) Detected words after pruning edges in the MST.

binarize the image using a threshold of 0.6, and use it to mask the
original image via bitwise AND. In some cases, parts of letters are
removed due to the low resolution of the heatmap. To solve this
issue, we run a flood fill algorithm on the filtered image using the
binary image as a mask. In this way, we can complete those missing
letters. Figure 5(b) shows the results of removing non-text pixels.

Text Localization: Once non-text pixels have been removed, we
employ a region-based approach to localize text. We proceed in a
bottom-up fashion, first detecting small components and consecu-
tively merging them to form words. Figure 5 shows the main steps.

To find candidate characters, we run the connected components
algorithm. Figure 5(c) shows each connected region in a random
color; at this point the axis lines (shown in blue) are included as
candidate regions. We then filter regions based on their geometric
properties. Given a bounding box, we retain a region if its aspect
ratio ∈ [1/15,15] and its area ∈ [4,1000]. These criteria were de-
termined in accordance with prior work and our own experiments.
In Figure 5(d), this step removes the axis lines but we still have the
legend symbols (colored circles) as candidates.

c© 2017 The Author(s)
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To then identify candidate words, we compute a minimal span-
ning tree (MST) by applying Kruskal’s algorithm [Kru56] to a fully
connected graph in which the nodes are the candidate characters
and the edge weights are the Euclidean distances between bound-
ing box centers. Figure 5(e) shows a resulting MST. The MST cap-
tures proximity information between characters, but requires ad-
ditional pruning to isolate words. To do so, we first calculate the
most common element (l) in a length set containing the heights
and widths of all candidate characters. The intuition is that l repre-
sents the font height, which we can use to determine which MST
edges to filter. We discard edges with length > 2l. We also fil-
ter edges according to the alignment of the connected bounding
boxes. An edge is preserved if the bounding boxes are vertically
or horizontally aligned. We consider two boxes vertically aligned
if overlaphoriz(bi,b j)> min(wi,w j)/2; horizontal alignment is de-
fined similarly. Finally, we assume that all characters in a word
should have the same color. We calculate the mean CIE LAB color
(ci) for each pixel in a connected component, and discard an MST
edge if dist(ci,c j)> 20 according to CIEDE2000 color difference.
In Figure 5(f), this stage prunes MST edges connecting legend sym-
bols (colored circles) and legend labels.

4.2. Optical Character Recognition

Next, we perform optical character recognition for each candi-
date word, using the open source Tesseract [Smi07] engine (Fig-
ure 4(c)). An important aspect of OCR performance is the quality
of the input image. In order to archive the best performance, it is
recommended to have high resolution images with horizontal text,
high contrast and little noise. However, text in chart images may be
small and have varied orientations.

First, we crop a word rectangle from the binary image and scale
it by a factor of 3. We run Tesseract multiple times with the image
rotated at different angles, including 0◦, 90◦, and −90◦. Tesser-
act returns both a text string and a confidence score. We select the
string with the highest confidence. In case of a tie, we count the
number of connected components in the cropped image, excluding
small regions that represent diacritics or dot marks over a lowercase
‘i’ or ‘j’, and select the text string with the number of characters
closest to the number of components. The orientation information
is used in the next stage to merge related words. We also filter word
candidates with confidence < 25%. For example, in Figure 4(c) we
remove the legend symbols (colored circles).

After inspection of OCR results, we found some common errors
that can be fixed by some simple heuristics. The vowel ‘O’ or ‘o’
was the output in multiples cases instead of the number ‘0’. Given
the nature of our charts, it is more likely to be a number than the
vowel when appearing as a single-character string. We found a sim-
ilar confusion among the letter ‘l’ and the number ‘1’.

4.3. Word Merging

Text elements in charts may contain multiple words; for example,
the variable “Miles per Gallon” in the y-axis title of Figure 4. In this
stage, we seek to detect such cases and merge associated words to
produce a final set of bounding boxes and extracted text strings.

We merge words if they are aligned and have the same orienta-
tion. Consider Figure 4(b), where the three words (‘Number’, ‘of’,
‘Records’) are vertically oriented. Let bi and b j denote the bound-
ing boxes for ‘Number’ and ‘of’ respectively. In this case, we are
testing vertically aligned boxes, but the same approach applies for
the horizontal case. We then check the following conditions:

• bi and b j have the same orientation if angle(bi) = angle(b j)
• bi and b j are near each other if distext(bi,b j) < min(wi,w j),

where distext is the external separation between bi and b j.
• bi and b j align if overlapvert(bi,b j)> min(wi,w j)/2

4.4. Validation

We evaluate our text localization and extraction methods against
our three chart corpora. We first report the accuracy of bounding
box identification. We then evaluate OCR performance against esti-
mated and ground truth bounding boxes, using both exact matching
and edit distance to compare text strings.

Text Localization Performance: To validate our approach we use
precision, recall and F1-score metrics as defined in [Luc05]. These
metrics are widely used in text localization competitions (e.g., IC-
DAR 2003 and 2005).

For a box b we find the best match b̂ in a set of boxes B using:

b̂ = m(b,B) = maxma(b,b′) |b′ ∈ B| (1)

Where ma(bi,b j) =
2 area(bi∩b j)

area(bi)+area(b j)
. Note that ma is 1 for equal

boxes and 0 for boxes without intersection.

Then, we apply this definition of best matching to our bounding
boxes T (ground truth boxes) and E (estimated boxes) in a chart
image. We define precision, recall and F1-score as follows:

p =
∑be∈E m(be,T )

|E| , r =
∑bt∈T m(bt ,E)

|T | , F1 = 2
p · r
p+ r

(2)

Table 2 shows the average value of F1 over all images. The ACA
corpus has the lowest F1-score (80%) due to a higher variation in
visual styles, intersection of text content with other elements in the
chart, and text with very small font sizes.

As it is unlikely to infer boxes that exactly match the ground
truth, the F1-score can vary from 80%-100% even if all text is cor-
rectly localized. For example, when simply shrinking or expanding
the ground truth boxes by 2 pixels, the F1-scores for the QTZ cor-
pus are 82% and 85%, respectively. Our estimated boxes are very
tight to the letters. We calculated F1-scores while expanding the
boxes from 1 to 5 pixels and found a peak at 3 pixels. The results
in Table 2 were computed using this padding.

Ours Microsoft OCR [mic]

VEG 88% 44%
QTZ 86% 68%
ACA 80% 61%

Table 2: Text localization performance (F1-scores).

c© 2017 The Author(s)
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Ground Truth Boxes Estimated Boxes

Exact Edit Exact Edit

VEG 95% 98% 87% 93%
QTZ 99% 100% 92% 96%
ACA 93% 98% 82% 88%

Table 3: OCR performance. F1-scores for ground truth and esti-
mated bounding boxes, using exact matching or edit distance.

In addition, we compared our results with the state-of-the-art ser-
vices provided by Microsoft OCR [mic]. As we can see in Table 2,
we obtain superior F1-scores for all three chart corpora. We ana-
lyzed the output of Microsoft OCR and noted problems with text in
multiple orientations. In particular, this leads to a low F1-score for
VEG, as in many cases the x-axis labels are vertically oriented. We
also noted problems with single-character text strings.

OCR Performance: To evaluate OCR performance, we use two
similarity functions for text strings. The first, simexact(si,si), sim-
ply returns 1 if the strings are equal and 0 if they are not. The sec-
ond function is simedit(si,si)= 1− lev(si,s j)/max(|si|, |s j|), where
lev(si,s j) is the Levenshtein edit distance between two strings and
the denominator is a normalization factor.

Similar to before, we define precision, recall and F1-score as:

p =
∑be∈E sim(be, b̂e)

|E| , r =
∑bt∈T sim(bt , b̂t)

|T | , F1 = 2
p · r
p+ r

(3)

Here, sim(.) can be any of the two similarity functions and b̂e
and b̂t are the best matchings to be and bt respectively. Table 3
shows F1-scores for both similarity functions. OCR performance
for ground truth bounding boxes is at least 93% using simexact and
98% using simedit .

In order to evaluate OCR performance for estimated boxes, we
use the best matching rule (Equation 1) and consider two boxes
the same if ma(bi,b j) > 0.5. This rule is commonly used to evalu-
ate text localization techniques. If there is not a perfect matching,
we penalize it by 1, the maximum value returned by the similarity
functions. The last two columns in Table 3 report F1-scores for our
estimated boxes. In the case of simexact the lowest value is 82% in
the ACA corpus. Using simedit our lowest F1-score is 88%.

5. Text Role Classification

Given a set of text elements (i.e., bounding boxes and text con-
tent), we want to classify each according to its role in the chart. We
consider the 8 text types illustrated in Figure 2. This classification
may be performed for text elements inferred using the methods of
the previous section, or for text elements directly extracted from
vector graphics (e.g., SVG or PDF). Our technique uses geometric
properties of the bounding boxes to define feature vectors which
we then classify using Support Vector Machines (SVM) [CV95].
In contrast to prior work, we include structural information based
on a global analysis of bounding boxes. We also perform post-
processing to further improve the results.

(I)(II)

(III) (IV)

relative to image

relative to container

Figure 6: Bounding box features using geometric information,
showing the information to compute features for the red box.

5.1. Feature Engineering & Classification

We use the geometric properties of the bounding boxes to define a
feature vector of 14 dimensions. These features are grouped in three
categories. The first category consists of 5 features concerning the
position and aspect ratio of a bounding box. The idea is that some
text types should be located in specific regions of the chart. For
instance, an x-axis title will normally be located near the bottom or
top of a chart. The features are the normalized center coordinates
(xc/w f ig, yc/h f ig), aspect ratio (wi/hi), angle with respect to the
image center (θ), and quadrant (quad ∈ {I, II, III, IV}). Figure 6
illustrates these concepts.

The second category contains 3 features that also encode the spa-
tial information relative to the global bounding box for all elements
(the blue rectangle in Figure 6). The features are the normalized
container size (hcont/h f ig, wcont/w f ig), normalized center coordi-
nates relative to the container (uc, vc), and the angle (rad) with
respect to the container center (blue arrows in Figure 6).

The third category has 4 features that exploit structural informa-
tion. For example, if box bi is a y-axis label, then it should lie on
a vertical line that intersects other boxes (i.e., other y-axis labels).
We define the vertical score (scorev = ni/n), where n is the number
of boxes in the image and ni is the number of boxes that intersect
bi vertically. In Figure 6, the red box intersects with one box below
it, so has scorev = 1/5. The same reasoning applies to the horizon-
tal case (scoreh). However, labels in legends might also be aligned
vertically. So, scorev may not distinguish between y-axis labels and
legend labels. Nevertheless, the range of y-coordinates in y-axis la-
bels might be greater than range of y-coordinates in legend labels,
as y-axis labels typically extend across the height of the image. We
define the vertical span (spanv = rangei/h f ig), where rangei is the
vertical range of the boxes that intersect with bi. For instance, in
Figure 6 the range of the red box is the length of the red solid line.
Again, similar reasoning applies to the horizontal case (spanh).

Using these features, we train a multi-class SVM [CV95] using
a radial basis function kernel [MMR∗01]. Each class is assigned
a weight inversely proportional to its frequency in the input data.
We use parameter values γ = 0.1 and C = 100, found via cross-
validation on the training data.
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Number of Boxes F1-score

VEG QTZ ACA VEG QTZ ACA

x-axis-label 35,361 4,092 2,473 100% 100% 100%
x-axis-title 4,371 43 270 99% 94% 97%
y-axis-label 45,169 2,982 2,473 100% 100% 100%
y-axis-title 4,371 — 280 100% — 97%
legend-label 8,250 308 960 98% 99% 97%
legend-title 1,423 — 2 95% — 0%
text-label — 565 147 — 99% 79%
title — — 50 — — 93%

Average 98,945 7,990 6,558 100% 100% 98%

Table 4: Text role classifier performance. Columns 2-4 show the
number of boxes in our three chart corpora by text type. The latter
columns present F1-scores using 5-fold cross validation.

5.2. Validation

We evaluate our classifier using ground truth bounding boxes from
our three chart corpora. Columns 2-4 in Table 4 show the number
of boxes for each text type. Given the unbalanced number of boxes
among corpora, we decided to evaluate each corpus independently.
We performed 5-fold cross validation, using stratified sampling to
ensure each class was represented with approximately equal pro-
portions in each fold. As shown in Table 4, our classifier performs
well, with average F1-scores ranging from 98% to 100%. Note the
0% value for legend-title in the ACA corpus; this arises be-
cause there are only two instances of legend titles in that corpus.

Post-processing: Performing error analysis, we found that the
main confusion was y-axis label vs. legend-label (100
boxes), followed by legend-title vs. x-axis-title (32
boxes), and then legend-title vs. legend-label (31
boxes). To improve our results, we post-process the SVM output.
Our heuristic rules reduce the numbers of incorrect charts in VEG
from 54 to 4, in QTZ from 5 to 1, and in ACA from 16 to 4.

We first detect the legend orientation (vertical or horizontal) us-
ing legend-labels. If not all boxes align in one direction, we
choose the orientation with the most aligned boxes. We then se-
lect boxes with role legend-label that are not aligned and
check if they align with y-axis labels. If so, we change
their role to y-axis-label. Next, we verify that all y-axis-
labels vertically align. If any of these boxes do not align, we
check if they align with legend-labels or x-axis-labels,
and change their role accordingly. If they do not align with any
of these, we assign the role text-label. Finally, if there are
multiple legend-titles, we check if they are on the top on
the legend-labels and select the one on the top. For the oth-
ers, we check if they are aligned with the legend-labels, x-
axis-labels, or y-axis-labels and reassign their text type
accordingly. If not aligned, we assign role text-label.

6. Mark Type Classification

Text elements for axes and legends provide valuable information
about how data is encoded in a chart. However, to infer a full chart
specification, we must also identify the type of graphical marks

Ours ReVision ChartSense # Images

Area Graphs 95% 88% 67% 90
Bar Graphs 97% 78% 93% 169
Curve Plots 94% 73% 78% 318
Maps 96% 84% 88% 249
Pareto Charts 89% 85% 85% 168
Pie Charts 98% 79% 92% 210
Radar Plots 93% 88% 86% 137
Scatter Plots 92% 79% 86% 372
Tables 98% 86% 94% 263
Venn Diagrams 91% 75% 67% 108

Average / Total 94% 80% 90% 2,084

Table 5: Mark type classification accuracies for our classifier, Re-
Vision [SKC∗11], and ChartSense [JKS∗17].

Ours (All) Ours (500)

Area Marks 98% 98%
Bar Marks 99% 98%
Line Marks 95% 98%
Plotting Symbols 99% 98%
Other 97% 100%

Average / Total 98% 98%

Table 6: Mark type classification performance. F1-scores using
5,125 and 2,500 chart images, grouped in 5 categories.

used to encode data. Here we present a classifier that takes a bitmap
chart image as input and estimates the mark type used. Our primary
classifier is trained to recognize five mark types: bars, lines, areas,
scatter plot symbols, and “other”. This last class is included to rec-
ognize chart types that are not supported by our larger pipeline. To
evaluate our approach, we also train a 10-class model and compare
our results with ReVision [SKC∗11] and ChartSense [JKS∗17].

6.1. Method

To perform mark type classification we use Convolutional Neu-
ral Networks (CNNs), which achieve state-of-the-art performance
for many computer vision tasks. However, CNNs require large
amounts of data and computation to train, while our chart cor-
pora contain a total of only 5,125 images. One strategy to ad-
dress this mismatch is to fine-tune a pre-trained network via
back-propagation. We use the Caffe [JSD∗14] implementation
of AlexNet [KSH12]. This model was trained on the ImageNet
dataset, which contains millions of images across 1,000 classes.
This same fine-tuning approach is used by the FigureSeer [SDF16]
system. ChartSense [JKS∗17] also uses a CNN, but with a different
architecture (GoogLeNet [SLJ∗15]) trained from scratch.

6.2. Validation

We evaluate our classification approach using two different data
sets. To compare with prior work, we first trained a model using
the ReVision [SKC∗11] corpus of 2,084 images across 10 cate-
gories (Table 5). We split the data into 75% and 25% for training
and testing, respectively. Table 5 shows multi-class classification

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Jorge Poco & Jeffrey Heer / Reverse-Engineering Visualizations:Recovering Visual Encodings from Chart Images

Image Information

Mark Type Classi�cation

Text Localization & 
Text Role Classi�cation

Infer data type

Infer axis type

Infer domain/range

{
  "width": 537,
  "height": 334,
  "chart_type": "Scatter Plot",
  "mark": "point",
  "title": "",
  "encoding": {
    "x": {
      "field": "US_Gross",
      "type": "quantitative",
      "axis": {"title": "US_Gross"},
      "scale": {
        "labels": ["0M","200M","400M","600M","800M"],
        "values": [0,200000000,...,800000000],
        "domain": [0,800000000],
        "range": [111,511],
        "type": "linear"
      }
    },
    "y": {
      "field": "MPAA_Rating",
      "type": "nominal",
      "axis": {"title": "MPAA_Rating"},
      "scale": {
        "labels": [ "R", "PG-13", ..., "G", "null"],
        "domain": [ "R", "PG-13",..., "G", "null"],
        "range": [257.5, 224.5, ..., 59.5, 26.5],
        "type": "nominal",
      }
    }
  }
}

Figure 7: Specification induction. A chart specification is recov-
ered for an input scatter plot, using information directly from ex-
tracted text and mark type information (colored regions). The grey
regions show additional sections that must be inferred (i.e., data
type, axis type, and scale domain & range).

accuracy per chart type as well as the average accuracy. Our clas-
sifier exhibits superior performance, with an average classification
accuracy of 94% compared to ReVision’s 80% and ChartSense’s
90%. We did not compare with Siegel et al. [SDF16], as they use
the same fine-tuning strategy. They report an accuracy of 84% us-
ing a 7-class model on a different chart image corpus.

For our second data set, we merged the images from our three
chart corpora (5,125) with the ReVision dataset (2,084) for a to-
tal of 7,209 images. We grouped the charts into 5 categories: line
marks (1209), bar marks (1775), area marks (586), plotting sym-
bols (2522), and all “others” (1135). We again split the data into
75% and 25% for training and testing, respectively. The second col-
umn in Table 6 shows F1-scores for this model. We achieve highly
accurate classification with an F1-score of 98%.

To assess the effects of unbalanced groups, we randomly filtered
our second dataset down to 500 images per category, and trained
another model. The last column in Table 6 shows the F1-scores for
this model. We again achieve an average F1-score of 98%.

7. Specification Induction

Given mark type information, text content, and bounding boxes,
we can produce a visual encoding specification for a chart image.
As shown in Figure 7, we use the results of earlier pipeline stages
to directly specify components such as the chart width & height,
mark type, data field names, and chart & axis titles. However, other
elements — including data types for each encoded field and axis
specifications (domain, range, scale type) — must still be inferred.

Inferring Data Types: We use axis or legend label text to clas-
sify data types as either quantitative or nominal (here encompass-
ing both categorical and ordinal fields). To check for quantitative
data, we first attempt to parse the label text as numbers (e.g., ‘-
100’, ‘1000’, ‘4.5’, ‘1e-10’). However, in many cases this is in-
sufficient due to additional modifiers, such as characters indicating
units. If naïve parsing fails, we further check if the text uses the
International System of Units (e.g., ‘1M’, ‘1k’, ‘10M’) and parse

these as floating point numbers. For instance, ‘1M’ is converted
to 1,000,000. Figure 7 includes x-axis labels that use SI notation.
If this fails, we attempt to parse the test using a library of com-
mon units, including percentages (‘10%’) and bytes (‘10MB’). If
any of these stages succeed, we assign the quantitative data type,
otherwise we assign the nominal type. Currently date-time types
are treated as nominal; in future work we plan to additionally add
string parsers to recognize temporal data as a dedicated type.

Inferring Axis Domain & Range: For quantitative variables,
we let {x1,x2, ...,xn} denote the center x-coordinates of the label
bounding boxes in the x-axis and {v1,v2, ...vn} denote the values
of the text contents on each box. We then infer the x-axis domain
as [v1,vn] and axis range as [x1,xn]. (See x-axis in Figure 7). The
same procedure (using y-coordinates) is applicable for the y-axis.

For nominal variables, we let {x1,x2, ...,xn} denote the cen-
ter x-coordinates of the label bounding boxes in the x-axis and
{t1, t2, ...tn} denote text content on each box respectively. Then
we infer the x-axis domain as [t1, t2, ..., tn] and the axis range as
[x1,x2, ...,xn] (and similarly for the y-axis, as in Figure 7).

Inferring Axis Scale Type: Once we know that an axis encodes
a quantitative field, we can infer the axis scale type (linear, loga-
rithmic, power or sqrt) using the domain and range values. We use
non-linear least squares to fit multiple functions to the data (i.e.,
linear, log, power and sqrt functions) and pick the model with the
minimum mean squared error.

8. Example Results

Figure 8 shows successful outputs of our system: given only bitmap
images as input, we are able to successfully recover full visual en-
coding specifications for a variety of mark types, data field types,
and axis scales. Figure 8(e) includes a log-transformed x-axis scale.
Note that inferred specifications may have empty fields; for exam-
ple Figures 8(c & d) lack axis titles.

We also noted some recurring errors in our inferred chart speci-
fications, which can arise due to failures of text localization, OCR,
or role classification. Incorrectly merged labels due to tight spac-
ing occur in the QTZ and ACA corpora (Figure 9(a)), notably with
x-axis labels. The minimal separation between labels makes it diffi-
cult for our techniques to isolate them. One approach to address this
error may be to process the text content of unusually long boxes,
detect any repetitive patterns, and separate the labels accordingly.

Another error arises due to the use of text characters as plotting
symbols (Figure 9(b)), which occurs in all three corpora. Our neural
network text pixel classifier in the word detection stage reduces
these errors relative to standard region-based localization schemes,
but we still get a few symbols confused with text labels.

In addition, bounding boxes in non-standard locations occur in
the QTZ corpus. In the left chart in Figure 9(c), the legend label
is misclassified as a y-axis label. First, our technique fails to sepa-
rate the legend symbol (top-left box) and legend label because both
have the same color. Second, the box is left-aligned with the y-axis
labels and so the text role classifier confuses its text role. In the
right chart, the y-axis title is placed above the y-axis labels and the
role classifier fails to recognize it as a title.
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Vega Charts Quartz Charts Academic Charts
{
  "width": 476,
  "height": 473,
  "title": "",
  "chart_type": "BarGraph",
  "mark": "bar",
  "encoding": {
    "x": {
      "field": "B|N(yield)",
      "type": "quantitative",
      "axis": {"title": "B|N(yield)"},
      "scale": {
        "type": "linear",
        "labels": ["10","15",..., "65","70" ],
        "values": [10,15,...,65,70],
        "domain": [10,70],
        "range": [60,460]
      }
    },
    "y": {
      "field": "Number of Records",
      "type": "quantitative",
      "axis": {"title": "Number of Records"},
      "scale": {
        "type": "linear",
        "labels": ["0","5",...,"40","45"],
        "values": [0,5,...,40,45],
        "domain": [0,45],
        "range": [415,15]
      }
    }
  }
}

{
  "width": 930,
  "height": 523,
  "title": "",
  "chart_type": "LineGraph",
  "mark": "line",
  "encoding": {
    "x": {
      "field": "",
      "type": "quantitative",
      "axis": {"title": ""},
      "scale": {
        "type": "linear",
        "labels": ["'13","'14","'15"],
        "values": [13,14,15],
        "domain": [13,15],
        "range": [209,780]
      }
    },
    "y": {
      "field": "",
      "type": "quantitative",
      "axis": {"title": ""},
      "scale": {
        "type": "linear",
        "labels": ["35","40","45","50","55%"],
        "values": [35,40,45,50,55],
        "domain": [35,55],
        "range": [458,14]
      }
    }
  }
}

{
  "width": 924,
  "height": 675,
  "title": "",
  "chart_type": "ScatterGraph",
  "mark": "point????",
  "encoding": {
    "x": {
      "field": "Human score",
      "type": "quantitative",
      "axis": {"title": "Human score"},
      "scale": {
        "type": "linear",
        "labels": ["0","0.2","0.4","0.6","0.8","1"],
        "values": [0,0.2,0.4,0.6,0.8,1],
        "domain": [0,1],
        "range": [60,915]
      }
    },
    "y": {
      "field": "ASR score",
      "type": "quantitative",
      "axis": {"title": "ASR score"},
      "scale": {
        "type": "linear",
        "labels": ["0","0.2","0.4","0.6","0.8","1"],
        "values": [0,0.2,0.4,0.6,0.8,1],
        "domain": [0,1],
        "range": [631,16]
      }
    }
  }
}

{
  "width": 463,
  "height": 478,
  "title": "",
  "chart_type": "AreaGraph",
  "mark": "area",
  "encoding": {
    "x": {
      "field": "BIN(gas)",
      "type": "quantitative",
      "axis": {"title": "BIN(gas)"},
      "scale": {
        "type": "linear",
        "labels": ["1.4","1.6",...,"3.2","3.4"],
        "values": [1.4,1.6,...,3.2,3.4],
        "domain": [1.4,3.4],
        "range": [41,405]
      }
    },
    "y": {
      "field": "Number of Records",
      "type": "quantitative",
      "axis": {"title": "Number of Records"},
      "scale": {
        "type": "linear",
        "labels": ["0","2","4","6","8","10","12","14"],
        "values": [0,2,4,6,8,10,12,14],
        "domain": [0,14],
        "range": [413,13]
      }
    }
  }
}

(a)

(b)

(c)

(d)

(e)

(f)

{
  "width": 894,
  "height": 570,
  "title": "",
  "chart_type": "LineGraph",
  "mark": "line",
  "encoding": {
    "x": {
      "field": "Noun Frequency",
      "type": "quantitative",
      "axis": {"title": "Noun Frequency"},
      "scale": {
        "type": "log",
        "labels": ["10","100","1000","10000","100000","1e+06"],
        "values": [10,100,1000,10000,100000,1000000],
        "domain": [10,1000000],
        "range": [231,844]
      }
    },
    "y": {
      "field": "F-score",
      "type": "quantitative",
      "axis": {"title": "F-Score"},
      "scale": {
        "type": "linear",
        "labels": ["0","0.1",...,"0.8","0.9"],
        "values": [0,0.1,0.2,...,0.8,0.9],
        "domain": [0,0.9],
        "range": [464,20]
      }
    }
  }
}

{
  "width": 930,
  "height": 523,
  "title": "",
  "chart_type": "BarGraph",
  "mark": "bar",
  "encoding": {
    "x": {
      "field": "",
      "type": "quantitative",
      "axis": {"title": ""},
      "scale": {
        "type": "linear",
        "labels": ["2011","2012","2013","2014","2015"],
        "values": [2011,2012,2013,2014,2015],
        "domain": [2011,2015],
        "range": [126,851]
      }
    },
    "y": {
      "field": "",
      "type": "quantitative",
      "axis": {"title": ""},
      "scale": {
        "type": "linear",
        "labels": ["0","5","10","15","20","25","30 cents per pound"],
        "values": [0,5,10,15,20,25,30],
        "domain": [0,30],
        "range": [458,16]
      }
    }
  }
}

Figure 8: Successful examples of inferred specifications for bitmap inputs from each corpus.

Finally, some chart designs in the QTZ corpus use direct label-
ing of elements (e.g., bars in a bar chart) in lieu of standard x-axis
labels. Our system correctly identifies these elements as text labels,
but does not use them to infer the correct x-axis domain. Augment-
ing our system with graphical mark extraction (which is beyond the
scope of this paper), might allow us to resolve this issue.

9. Discussion

We presented multiple components that comprise a pipeline for
reverse-engineering visualizations, each performing with high ac-
curacy. Our text localization and recognition methods outperform
Microsoft OCR by at least 19% in the ACA corpus. While we did
not directly compare our text role classifier with other approaches,
we obtain a F1-score of 98%. This result is higher than the 92%
F1-score reported by Choudhury et al. [CWG16] using different
features and a smaller data set (165 charts, 4,363 boxes). Our mark
type classification approach exhibits superior performance to ReVi-
sion’s classifier (F1-scores 94% vs. 80%) on their corpus. However,
we are not the first to use Convolutional Neural Networks for mark
type classification; Siegel et al. [SDF16] use a similar approach in
FigureSeer. Finally, we demonstrated how to use the results of these
components to recover a complete visual specification for a chart
image. To the best of our knowledge, this is the first end-to-end sys-
tem to automatically recover visual encoding specifications from a

bitmap image. Going forward, we hope to improve our methods
and explore novel applications enabled by our pipeline.

9.1. Limitations and Future Improvements

An immediate future work item is to further improve the perfor-
mance of each stage in our pipeline. Though our text localization
and recognition outperforms state-of-the-art OCR, we consider this
an open problem that requires more attention for complex chart im-
ages, as well as the varied characters (mathematical notation, etc.)
common to scientific papers. For text role classification, we encode
structural information in the feature vectors based on a global anal-
ysis of bounding boxes, and perform additional post-processing
based on SVM output. More robust techniques might be used. An
interesting future research direction would be to apply structured
prediction techniques to this task.

While our methods identify legend titles and labels, we do not
perform interpretation of legends. As a result, our pipeline does not
infer scale mappings for visual channels such as color, shape, and
size. Legend analysis remains an important area for future work.

To scope this work, we made simplifying assumptions regarding
possible chart types. However, many components of our pipeline
can be applied to more general situations. Future work might ex-
pand our pipeline to cover multiple mark types (e.g., layers), trel-
lis plots, maps, error bars, box plots and radial charts. Currently
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(a) Merged Labels due to Tight Spacing

(b) Text Characters as Plotting Symbols

(c) Boxes Located in Unusual Locations

Figure 9: The three most common chart inference failure cases.

we consider mark information only at the level of whole-image
classification. Combining our methods with mark extraction meth-
ods [SKC∗11,SDF16,JKS∗17] might enable more accurate specifi-
cation inference for a wider array of chart types. A related research
direction is to integrate our work with data extraction techniques.

9.2. Potential Applications

While this paper focuses primarily on the application of computer
vision and machine learning methods to interpret chart images, our
results can enable a variety of visualization applications. For ex-
ample, our inferred chart specifications enable indexing of chart
images based on mark type, visualized data fields, and data ranges.
A straightforward application is to use this information to improve
search engines [CCA15] by better incorporating figures.

Another application area is to restyle or retarget visualizations,
an initial motivation of the ReVision system [SKC∗11]. This task
is important as many published charts exhibit poor perceptual de-
sign choices that may hamper understanding. In addition, the lack
of accessibility information leaves many charts unusable by peo-
ple with vision impairment. Our pipeline allows automatic extrac-
tion of valuable metadata; paired with access to the backing data, it
could enable a variety of redesign tools.

We are particularly eager to perform large-scale analyses of vi-
sualization practices. Using the information extracted by our sys-
tem, we hope to chart the development, deployment, and dissemi-
nation of visual encoding conventions across various literatures. By
reverse-engineering visualizations, we can perform an automated
census and analyze visualization use in the wild.

To help enable future applications, our pipeline and chart corpora
are available at https://github.com/uwdata/rev.
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