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Fig. 1. Automatic extraction and redesign of color mappings for a geographic heatmap. The bitmap image on the left uses a questionable
rainbow color palette. Our methods automatically recover the color mapping, enabling applications such as automatic recoloring. The
generated image on the right replaces the original color palette with a perceptually-motivated diverging color scheme.

Abstract— Visualization designers regularly use color to encode quantitative or categorical data. However, visualizations “in the wild”
often violate perceptual color design principles and may only be available as bitmap images. In this work, we contribute a method
to semi-automatically extract color encodings from a bitmap visualization image. Given an image and a legend location, we classify
the legend as describing either a discrete or continuous color encoding, identify the colors used, and extract legend text using OCR
methods. We then combine this information to recover the specific color mapping. Users can also correct interpretation errors using an
annotation interface. We evaluate our techniques using a corpus of images extracted from scientific papers and demonstrate accurate
automatic inference of color mappings across a variety of chart types. In addition, we present two applications of our method: automatic
recoloring to improve perceptual effectiveness, and interactive overlays to enable improved reading of static visualizations.

Index Terms—Visualization, color, chart understanding, information extraction, redesign, computer vision.

1 INTRODUCTION

Color mappings are commonly used to encode data and enhance vi-
sualization aesthetics. Distinct hues can be used to effectively convey
category values, while changes in luminance or saturation can encode
ordinal or quantitative differences. Designing effective color encodings,
however, can prove difficult. Designers must balance issues including
perceptual discriminability, cultural conventions, and aesthetic prefer-
ences [4, 11, 13, 18]. Poorly designed palettes can lead to imprecise
and inaccurate readings of the data [1, 2, 8]. Even when well-designed,
color encodings often afford less precise comparisons than alternative
visual channels such as position or size, and may suffer from issues
such as limited discriminability or simultaneous contrast.

Given the complexities of color design, analysts often rely on the
default palettes provided by visualization software packages. In many
cases these palettes — including ubiquitous rainbow palettes [2] — have
not been subjected to perceptual design and analysis. As a result,
viewers could benefit from tools for automatic recoloring and interactive
querying of visualizations with color encodings.

However, many visualizations “in the wild” are available only as
static images in a bitmap or vector format, including charts found in
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media such as web sites, presentation slides, textbooks, and academic
papers. While these static images are useful for viewing by people,
their content is largely inaccessible to computers, limiting our ability
to perform automated analysis and retargeting.

In response, some recent projects explore the use of computer vision
and machine learning techniques to (semi-)automatically interpret chart
images [15, 22, 25, 26]. These systems can successfully identify chart
types, recover spatial encodings, and read off data values for basic plots
such as bar, pie, or line charts. However, these systems do not address
the task of automatically recovering color mappings.

We contribute a method to semi-automatically extract color encod-
ings from a bitmap visualization image. Given an image and legend
location, we classify the legend as describing either a discrete or con-
tinuous color encoding, identify the colors used, and extract legend text
using OCR methods. We then combine color and text information to
recover the color mapping. We evaluate our techniques using a corpus
of images extracted from scientific papers and demonstrate accurate
automatic inference of color mappings across a variety of chart types.
We also present a legend annotation interface that can be used to label
images and correct interpretation errors.

Extracted color mappings can be used to aid visualization index-
ing, search, and redesign. We present two user-facing applications
of our color encoding extraction methods. Our first application per-
forms automatic recoloring: given bitmap images as input, we produce
new images that use effective, perceptually-motivated color encodings.
Inspired by Kong & Agrawala [16], our second application adds interac-
tive overlays to a static image, enabling data querying and highlighting.
Users can brush a color legend to select corresponding data values,
hover over data points to highlight matching legend values, and select
regions to view automatically-produced statistical summaries. Many of
these features require accurate extraction of legend color values only
(not OCR text), and are applicable to a variety of visualization images.
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Fig. 2. Example visualization images from our corpus, each including an explicit color legend.

2 RELATED WORK

Our work on color mapping extraction draws on two streams of prior
work: color design for visualization and automatic chart interpretation.

2.1 Color Design for Visualization

Colors play a central role in data visualization, as they are commonly
used to visually encode data. However, there is often a disconnect
between visualization research and visualization practice “in the wild”.
For example, Dasgupta et al. [8] report mismatches with the climate
research community based on a two year collaboration with domain sci-
entists. Despite the availability of decades-old design guidelines [2, 24]
in the visualization literature, rainbow color maps are still ubiquitous.
Such design choices can have serious consequences: Borkin et al. [1]
found that changing the color encoding used for visualizations of arte-
rial stress (switching from a rainbow scale to a perceptually-motivated
palette) led to marked improvements in doctors’ diagnostic accuracy.
Unfortunately, a number of existing commercial visualization tools still
provide default color palettes of questionable quality.

Meanwhile, a number of visualization projects have sought to pro-
vide both stock palettes and palette-generation tools to promote more
effective mappings between data values and colors. Cynthia Brewer’s
color-use guidelines [4] and popular ColorBrewer palettes are widely
used for coloring both maps and more general information visualiza-
tions. Heer & Stone [13] demonstrate how models of color naming can
be used to assess and improve color palettes. Lin et al. [18] contribute
an algorithm for generating color palettes that respect “semantically res-
onant” color-concept associations. More recently, Gramazio et al.’s Col-
orgorical [11] tool allows designers to interactively balance concerns
such as discriminability, naming similarity, and aesthetic preferences.

In this work, we contribute techniques for extracting color encodings
from visualization images, as well as applications for automatic recolor-
ing and interactive overlays. To be clear, we do not contribute methods
for color design. For example, our recoloring application assumes an
appropriate target color scheme is provided as an input.

2.2 Automatic Chart Interpretation & Retargeting

A growing body of work focuses on the “inverse problem” of data
visualization: given a visualization, can one recover the underlying
encodings and data values? Solutions to this problem can enable auto-
mated analysis, indexing and redesign of published visualizations — in
some cases without recourse to an original specification or dataset.

Harper and Agrawala [12] introduce a system to deconstruct D3 [3]
visualizations within a web browser. By exploiting the live data binding
between vector graphics and backing data elements, they extract data,
marks, and mappings between them. This information can then be used
for tasks such as redesign and style transfer.

A number of projects focus on the more difficult problem of inter-
preting visualizations available only as static images. Savva et al. [25]
introduce ReVision, a system to classify bitmap chart images by chart
type, automatically extract data from pie charts and bar charts, and
generate redesigns using the extracted data table. Siegel et al. [26] and
Choudhury et al. [6, 23] present techniques to extract data from line
charts using bitmap and vectorial images, respectively.

Other projects —including ChartSense [15] and iVoLVER [21] —
focus on semi-automated approaches, leveraging interactive annotation
to perform accurate chart interpretation. We similarly provide an an-
notation interface that we use for corpus annotation; this interface can
also be applied to correct automated extraction errors.

While reading data from a chart image is one potential goal of
automatic interpretation, one might also wish to infer the program that
generated the visualization. Extracting encoding specifications can be
valuable for indexing and can often be performed even when occlusion
and visual clutter render precise data extraction impossible. Poco &
Heer [22] present a pipeline that specializes in accurate text localization
and recognition within bitmap chart images, and classifies recovered
text labels according to their role (e.g., x-axis label, y-axis label, legend
label, etc). Using these components they are able to perform accurate
extraction of spatial encodings. In this paper we follow a similar aim,
but focus squarely on the problem of color mapping extraction. We
adopt methods from Poco & Heer [22] to recognize the text content
of legend labels. Siegel et al. [26] also contribute a classifier to assign
semantic roles to each text element, and use inferred legend labels to
identify legend symbols. However, they assume that text information is
given a priori, focus only on discrete color legends, and do not recover
the color mapping. To the best of our knowledge, no prior work has
proposed a technique to semi-automatically recover color mappings
from a static visualization image.

In addition to indexing and redesign applications, automatic chart
interpretation can enable new interactions with previously static me-
dia. Kong & Agrawala [16] demonstrate how to add interactivity to
static pie and bar charts. They use the ReVision system [25] to inter-
pret the chart and generate graphical overlays to highlight marks and
provide guideline annotations to assist chart reading. Inspired by this
application, we introduce a novel application that leverages extracted
color mappings to support interaction with either plotted data or color
legends to highlight and summarize values of interest. Elmqvist et
al. propose Color Lens [9], a technique that dynamically optimizes
color scales based on a set of sampling lenses. Using this technique
we can emulate some of the features of interactive overlays; however,
Color Lens has a different goal and does not recover color mappings
from bitmap images.

3 DATA COLLECTION AND ANNOTATION

To develop techniques for color mapping extraction, we compiled an
annotated corpus of visualization images using color encodings.

3.1 Image Collection

We collected visualization images from both academic papers and the
web sites of scientific institutions (e.g., NASA, universities). First we
downloaded 16 million images from papers indexed by the Semantic
Scholar1 search engine. These chart images come from academic
publications in Computer Science. In order to reduce the number of
images and promote design variability, we selected figures from the
areas of visualization, human computer interaction, computer vision,
machine learning, and natural language processing. From an initial

1http://www.semanticscholar.org/
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Fig. 3. Graphical user interface for legend annotation. The bottom panel
shows chart images in our corpus. Outline colors represent the color
legend type: orange for continuous and blue for discrete.

(a) (b)

Fig. 4. Annotations on color legends. Note that we extract different
information for (a) discrete and (b) continuous legend types.

collection of 330,000 figures, we manually selected 1,000 chart images
containing explicit color legends. We initially selected a random subset
of 200 images per category. We then removed figures without a color
legend and randomly selected more figures to replace them; after some
iteration, we arrived at a set of 1,000 figures. We then downloaded
275 papers from three journals influential in earth sciences: Nature,
the Journal of Climate, and Geophysical Research Letters. To extract
figures from journal PDF files, we used the pdffigures [7] utility.
We extracted 994 images and manually selected 500 chart images with
color legends, using the same process for manual selection described
previously. To further augment our collection, we crawled scientific
websites such as NASA and university departments (e.g., climatology
& oceanography), netting 300 additional images with color legends.

In sum, our corpus contains 1,800 visualization images with color
legends. We manually classified each image as representing discrete
or continuous data, and selected 800 charts uniformly at random for
each type. We use these 1,600 chart images for training and testing
throughout this paper. Figure 2 shows examples from our corpus,
including line charts, scatter plots, bar charts, area charts, pie charts,
heat maps, and geographic maps. Our only constraint for selecting
chart images was the inclusion of a color legend.

3.2 Legend Annotation

For each visualization image, we classified the color legend as either
discrete or continuous, and then manually labeled the legend elements

using a custom graphical interface (Figure 3). Two annotators per-
formed these tasks, requiring roughly 20 hours to complete using our
graphical interface.

We define discrete color legends as consisting of a set of symbol
elements ldisc = {e1,e2, ...,en}. Each symbol element is a 2-tuple
ei = (ci, ti), where ci is a color and ti is the text associated with the
color. Using our annotation interface, one can click a legend symbol
to extract the representative color ci and its location pi. Additionally,
to annotate the text ti associated with ci, one can draw a rectangle to
cover the whole text element. Given the text bounding box, we attempt
to recover the text content using the Tesseract OCR engine [27] and
manually correct the text as needed. We store both the text content and
bounding box information. In Figure 4(a) the yellow circles represent
the selected pixels and the red boxes represent the text elements.

We model continuous color legends as spatially contiguous gradients
parameterized by the minimum and maximum extents. Thus, lcont =
{(ci, ti), pmin ≤ pi ≤ pmax}, where pi is the i-th pixel position. In other
words, a continuous color legend is represented by all the colors along
the line between the minimum and maximum positions. To annotate
continuous color legends within our interface, one can simply click
the minimum and maximum positions. In Figure 4(b), these points are
represented by the yellow circles. To recover the colors, we scan from
pmin to pmax (for example, along the red line in Figure 4(b)). One can
also draw rectangles next to pmin and pmax to cover the legend labels
(red boxes in Figure 4(b)). We then apply OCR and (as needed) manual
correction to recover the text content of the labels.

4 COLOR MAPPING EXTRACTION METHOD

Our approach comprises 5 steps: (1) color legend identification, (2)
legend classification, (3) color extraction, (4) legend text extraction,
and (5) color mapping recovery. These steps are illustrated in Figure 5.
In step 1, we automatically detect legends that occur outside the main
plotting area; otherwise, users can manually indicate the legend region.
In step 2, we classify the legend as discrete, continuous, or other
(to capture images not supported by our technique). In steps 3 and
4, we automatically identify and process legend regions to extract
colors and associated text, using different algorithms for the discrete
and continuous cases. Finally, in step 5 we combine color and text
information to recover color mappings. Across each step, we model
colors using the CIE LAB color space. All the techniques described
in this section are trained and validated using the annotated corpus of
visualization images described in §3.

4.1 Color Legend Identification
Automatic legend identification is a difficult problem, as there is sig-
nificant variation in both placement and arrangement (i.e., vertical,
horizontal, grid). While legends are sometimes placed outside the
plotting area, it is also common to place them inside the plot area,
particularly in academic papers where the amount of space is limited.
In prior work, both Siegel et. al. [26] and Poco & Heer [22] contribute
classifiers that assign semantic roles to each text element (i.e., leg-
end label, axis title, axis label, etc.). Legend regions could then be
inferred based on recognized legend label and legend title elements.
A shortcoming of Siegel et al.’s method is that they assume that text
information is given a priori, which is not true for bitmap images. Poco
& Heer do not make this assumption and propose text localization and
recognition methods; however, these steps can still produce errors that
propagate forward.

Given the difficulty of accurate automatic legend extraction, and the
relative ease with which users can simply indicate a legend region with
a rectangular brush, our color extraction pipeline expects the legend
region to be given as an input. Nevertheless, in this section we present
a simple automatic method that does not require labeled text elements
and is applicable when the legend is outside the plotting area. This
method can be used to initialize a candidate legend region that can be
interactively adjusted as needed.

Method: Detection of continuous color legends is typically straightfor-
ward, as the color gradient is commonly placed outside the plotting area.
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Fig. 5. Steps to infer color mappings from a chart image. (a) Localize the legend region in the chart images. (b) Use a CNN to classify the color
legend as discrete, continuous, or other. (c) Depending on the legend type, process the legend to extract colors. (d) Use OCR to recover legend text.
(e) Merge color and text information to recover the color mapping.
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Fig. 6. Automatically identified plotting areas (orange) and legends
(green) for both (a) a continuous legend and (b) a discrete legend.

The intuition behind our method is that the plotting area will typically
be the largest connected component in the chart, and the second largest
component will be the color gradient. For example, see the heatmaps
and geographic maps in Figure 2. We first binarize an input image,
flood fill holes, and run the connected components algorithm. We then
sort the connected components by total area and remove the largest one
(i.e., plotting area). Next, we search through the other components in
order. If the next largest component fits a rectangle, we return it as the
color gradient. Figure 6(a) shows the largest component in orange, and
the automatically recognized legend area in green.

Discrete color legends are often placed inside the plotting area. How-
ever, if the legend has a rectangular border and is placed outside a
well-delimited plotting area, we can apply the identical method de-
scribed above for continuous legends. Figure 6(b) shows the identified
plotting area and discrete legend for a line chart.

Obviously, our simple method will fail for cases that violate our
assumptions. Our approach could be further augmented using the
methods of Poco & Heer [22], identifying legends based on text element
classification. Within user-facing applications, one can also manually
indicate a legend position by simply dragging a rectangle, as in our
annotation interface.

Validation: Across our visualization image corpus, our simple legend
identification technique correctly identifies 50% (400/800) of contin-
uous legends and 10% (77/800) of discrete legends. As expected, the
high prevalence in our corpus of legends placed within the plotting area
contributes to poor performance, particularly in the discrete case. Other
error cases include graphics that do not have a single dedicated plotting
area (e.g., heatmaps over multiple 3D physical models) or the presence
of variable background colors.

4.2 Color Legend Classification
Once we have identified the legend region in an image, we seek to
classify the legend type in order to apply appropriate extraction methods.
We trained a classifier that takes a legend region sub-image as input
and classifies the image into one of three color legend types: discrete,
continuous and other. This last class is included to recognize legend
images that are not supported by our approach. In our current version,

Precision Recall F1-score # Test Images

Discrete 96% 96% 96% 165
Continuous 97% 98% 97% 159
Other 95% 94% 95% 156

Average / Total 96% 96% 96% 480

Table 1. Legend classification performance.

the other class includes random sub-images from chart images. We
decided to train our classifier using these sorts of images to ensure the
classifier results are useful for seeking user intervention if automated
legend identification fails (i.e., it returns an incorrect legend region).

Method: We use a Convolutional Neural Network (CNN) model for
classification. CNNs achieve state-of-the-art performance for many
computer vision tasks and have been successfully used to classify the
chart type (bar, line, scatter, etc.) of visualization images [15, 22, 26].
Training a CNN from scratch requires a large amount of labeled training
data, yet we have only a few thousand images in our corpus. A common
solution to this mismatch is to fine-tune a pre-trained network via
backpropagation with additional images. Here, we fine-tune using the
Caffe [14] implementation of AlexNet [17], pre-trained on the millions
of images contained in the ImageNet dataset.

To train our CNN, we first extract the image regions (xl ,yl ,wl ,hl)
for each discrete and continuous color legend to use as examples of
those classes. To provide examples of the other class, for each chart
image we additionally extract an image region (xo,yo,wo,ho), where
(xo,yo) is a random coordinate and wo = r×wl , ho = r×wl , where
r is a random (uniform) number between [0.9,1.1]. We resize each
extracted sub-image to a 256×256 pixel square, preserving aspect ratio
and filling empty space with a white color.

Validation: We evaluate our classification approach using 2,400 im-
ages across 3 categories. To maintain parity among classes, for the
other class we sample 800 of the 1,600 randomized image regions
generated above. We then randomly split the data into training (80%)
and test (20%) sets. Table 1 shows the resulting precision, recall and
F1-scores for test set classification. Across all classes, we find that our
classifier exhibits an average F1-score of 96%.

4.3 Color Extraction
Given the color legend region and type we can proceed to extract colors,
using different algorithms for the discrete and continuous cases.

4.3.1 Discrete Legends
As described in Section 3, we represent a discrete color legend as a set
of elements ldisc = {e1,e2, ...,en}, where ei = (ci, ti). In this section,
we present a technique to extract the colors ci. As shown in Figure 7,
we first mask a legend image to isolate colored legend symbols and
then use clustering to extract representative colors.
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Fig. 7. Extracting color from discrete color legends. (a) Original legend
image. (b) Mask combining background and grayscale masks. (c) Color
pixels after applying the mask. (d) Yellow circles indicate pixels with
representative colors found via cluster analysis.

Method: We apply two masks to the legend image to filter extraneous
pixels: a background mask and a grayscale mask. We infer the back-
ground color cbg by computing a color histogram for all pixels in the
legend image and selecting the most frequent color. In most cases the
background color is white. As pixel colors may be noisy, we consider
a pixel part of the background if its color ci is in the range cbg±Tbg,
where we set Tbg = 5 (or approximately two JNDs [20]).

We consider a color ci to be grayscale if both its a and b LAB
components lie in the range 0±Tgray (again, setting Tgray = 5). The
grayscale mask is useful for removing grid lines and text; however, it
can also remove pixels that belong to a symbol encoded with a gray
color. We describe how we recover those pixels later in this section.

Applying these masks leaves the pixels for the legend col-
ors. Figure 7(b) shows the combined mask, and Figure 7(c)
shows the resulting colored pixels. Note that the colors for each
symbol might not be homogeneous, especially
along the symbol edges. As the color values
are noisy and also potentially discontinuous
(see inline figure), we can not use simple color binning or connected
components analysis. We need a more robust approach for grouping
pixels with similar color.

We apply a clustering algorithm to identify the legend colors.
We represent each colored pixel using a five-dimensional feature
vector consisting of the three LAB color chan-
nel values plus the x and y image pixel co-
ordinates: (L,a,b,x,y). In most cases, color
information is enough to groups the pixels. However, some legends
have colors with the same hue but varying luminance (see inline figure).
In such cases our clustering algorithm could fail if the colors are near
each other in the CIELAB space. Pixel coordinates help to separate
these cases.

We then use the DBSCAN [10] clustering algorithm. DBSCAN does
not require that the number of clusters be chosen a priori, and accepts
parameters that are well defined for our setting. The ε parameter
sets the maximum distance for two points to be considered in the
same neighborhood; we use ε = 5. The minPoints parameter sets the
minimum number of points in a cluster. We assume that a color legend
has at most 20 symbols and so minPoints = |color pixels|/20.

For each resulting cluster gi, we then select the most common color
to be the representative legend color ci. Figure 7(d) shows the locations
of pixels with representative colors (yellow circles).

As mentioned earlier, our grayscale mask may erroneously remove
pixels that belong to gray-colored legend symbols. To recover such pix-
els, we run the connected components algorithm within the grayscale
mask, and retrieve components with an area (i.e., number of pixels)
similar to the area of the discovered clusters gi.

Validation: We evaluate our discrete color extraction method against

(a) (b) (c) (d) (e) (f ) (g)

Fig. 8. Extracting color from continuous color legends. (a) Original
legend image. (b) Binarized image. (c) Flood fill to recover color gradient.
(d) Morphological erosion to separate text from legends. (e) Connected
components. (f) Color gradient is the largest connected component. (g)
Yellow circles indicate positions of minimum and maximum values.

our visualization corpus. We use precision, recall and F1-score metrics
typically used for comparing inferred bounding boxes in the context of
text localization [19]. However, in our case, we compare two sets of
colors (estimated and ground truth) instead of bounding boxes.

For a color c we find the best match in a set of colors S such that:

m(c,S) = min
c′∈S

distcolor(c,c
′) (1)

where distcolor(ci,c j) is the CIEDE2000 color difference.
We apply this best matching to align the ground truth legend colors

T and estimated colors E. We define δ (ci,c j) = dist(ci,c j)< 5. Note
that δ is 1 if two colors are within 5 CIE LAB units, 0 otherwise. We
noticed that comparing colors (ci, c j) in the representative pixels (pi, p j)
can be very sensitive, specially when legend symbol is a segment line.
This problem arises specially in annotated data. To address this issue,
we use patch regions centered at representative pixels (pi) and width
3. Thus, dist(ci,c j) returns the minimum color difference between
patches centered at pi and p j.

We define precision, recall and F1-score as follows:

p =

∑
e∈E

δ (e,m(e,T ))

|E|
, r =

∑
t∈T

δ (t,m(t,E))

|T |
, F1 = 2

p · r
p+ r

(2)

Our technique has a precision of 92%, recall of 89%, and F1-score
of 90% in our 800 discrete color legends.

4.3.2 Continuous Legends
In this section, we describe how to extract colors for a continuous
legend. To characterize a continuous color legend, we must identify the
color gradient end points pmin and pmax. We record the pixel locations
for each end point and extract colors by scanning the line between the
two. Figure 8 illustrates each step in this technique.

Method: Akin to the discrete case, we first infer the back-
ground color and remove background pixels. Next, we bi-
narize the legend image using a global threshold approach.
Note that the bottom part of the color gradient in Figure 8(b)
is incomplete. To recover such regions, we use a flood fill
algorithm. Figure 8(c) shows the completed region.

We noted that in some charts the text elements are very
close to the colorbar (see inline figure). To separate them,
we apply a morphological erosion operation (Figure 8(d)). Then we
run the connected components algorithm (Figure 8(e)). Our intuition
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Fig. 9. Analysis of quantized legends for continuous data. (a) Some
legends discretize a quantitative domain. (b) Breaks between colors
correspond to peaks in the absolute derivative of pixel color.

is that the color gradient should be the largest connected component
and all the text characters should be smaller. Thus, we select the largest
component (Figure 8(f)) and fit a rectangle that covers these pixels. We
note if the rectangle has a vertical or horizontal orientation based on its
aspect ratio. If vertical, we determine pmin and pmax by selecting two
aligned points, one at the top and one at the bottom side of the rectangle,
each horizontally centered. Scanning a line that join these two points,
we recover the colors belonging to this legend (See Figure 8(g)). An
analogous approach applies for the horizontal case.

Validation: We evaluate continuous legend color extraction on the 800
continuous examples in our corpus. For each image, we estimate pmin
and pmax using the method above and compare these two points with
the ground truth data p′min and p′max. For a vertical rectangle, we deem
two points similar if |py− p′y|< 3 (i.e., the y-coordinates are at most 3
pixels away). If both pmin and pmax lie near the ground truth values, we
consider the color gradient to have been successfully identified. The
horizontal case is treated similarly.

Our method achieves accurate extraction for 83% (662/800) of the
continuous legends in our corpus. Recurring error cases involve con-
fusion between the color gradient and background colors (i.e., when a
color gradient is placed within the plotting area) and confusion due to
text labels placed so close to the gradient that they become part of the
same connected component. Perhaps ironically, this first error case is
most prevalent in the visualization literature, as other disciplines tend
to place the color gradient outside the plotting area.

Quantized Continuous Domains: It is common to use discretized
version of continuous legends (Figure 9(a)). Our color legend classifier
classifies these legends as continuous, and we process them using our
continuous color extraction methods (i.e., determining pmin and pmax).
However, we can then perform a post-processing step to properly handle
this legend type.

Consider the horizontal color gradient in Figure 9(a). First we
compute the horizontal derivative to identify strong changes along the
x-axis. We apply a Sobel filter with a kernel of size 3. Figure 9(b)
shows the absolute values of this derivative (computed as the sum of r,
g, and b color channel derivatives). We next convolve the data with a
wavelet of size 10 (this value is the expected range that should cover
the peaks of interesest) and extract the peaks. Given k identified peaks,
we extract a set of k+1 colors by picking the colors at the midpoints
between peaks, or between the legend boundary and nearest peak.

4.4 Legend Text Extraction
The previous sections describe how we extract colors for discrete and
continuous legends. We now present a method for recovering text
elements from a legend image (Figure 5(d)).

Method: We first apply the text localization method of Poco &
Heer [22]. This approach consists of three stages: (1) word detec-
tion, (2) optical character recognition, and (3) word merging. In stage
1, a CNN trained to classify text vs. non-text pixels is used to mask
non-text pixels. Then, standard region-based text localization methods
are applied to output bounding boxes for individual words. In stage 2,

(a) (b)

Fig. 10. Recovering color-value mappings for discrete legends. In (a), we
associate text with the nearest legend symbol. For multi-column legends
(b), we first identify if the text is on the right or left of the legend symbols.

Fig. 11. Recovering color-value mappings for continuous color legends.
Values in bounding boxes ble f t and bright are mapped to positions ple f t
and pright , respectively. We then extrapolate values for pmin and pmax.

we apply optical character recognition to each candidate word using the
open source Tesseract [27] engine. Finally, in stage 3, words are merged
into phrases based on their orientation and geometric relationships.

Before submitting legend images to the text localization pipeline,
we remove all pixels that belong to either discrete legend symbols or
continuous color gradients. This preprocessing step cleans the input
images in order to improve text localization performance.

Validation: To evaluate the text extraction technique, we use the defi-
nition of best matching depicted in Section 4.3.1 (Equation 1), but in
our case, we compare two sets of boxes (estimated and ground truth)
instead of colors. For a box b, we find the best match in a set of boxes
S such that:

m(b,S) = max
b′∈B

distbox(b,b
′) (3)

Where, distbox(bi,b j) =
2 area(bi∩b j)

area(bi)+area(b j)
. Note that distbox is 1 for

equal boxes and 0 for boxes without intersection. We then apply
this matching to our bounding boxes T (ground truth boxes) and E
(estimated boxes) in a legend image. We define precision, recall and
F1-score as follows:

p =

∑
e∈E

m(e,T )

|E|
, r =

∑
t∈T

m(t,E)

|T |
, F1 = 2

p · r
p+ r

(4)

Using only the discrete color legends we obtain a precision of 82%,
recall 91% and F1-score 86%. If we do not remove the colored pixels
beforehand the F1-score is 83%; the OCR results are meaningfully
improved by this filter. In addition, these performance results are very
sensitive to the bounding boxes. For example, if we shrink or expand
the ground truth boxes by 2 pixels, the F1-scores reduce to values
between 82% and 85%. The main errors arise when legend symbols
contain multiple colors, in which case our preprocessing can fail to
remove those pixels.

Using the continuous color legends we obtain a precision of 78%,
recall 79% and F1-score 78%. The main issues arise with tick marks. A
tick may be confused with the ‘-’ character, extending the text bounding
box. In some cases ticks connect the text with the color gradient,
causing the text localization step to throw out text along with the color
gradient. Across both legend types, we obtain an overall precision of
80%, recall 85% and F1-score 82%.



Discrete Continuous
O
rig

in
al

Re
co
lo
re
d

(b) (c) (d)

(h)

(a)

(e) (g)(f )

Fig. 12. Automatic Recoloring: Given a chart image and target color scheme, we generate a recolored image with an alternative color encoding.

4.5 Recovering Color Mapping
Given the color information and the text extracted in the last two
sections, we can recover the full color mapping. To do so, we need to
associate the text values with the color information (Figure 5(e)).

Discrete color legends: Here, we connect each text bounding box with
a legend symbol — represented by a pixel inside the legend symbol.
For each text bounding box, we calculate the closest legend symbol and
associate this text with the color. This strategy also works for legends
with multi-line text (Figure 10(a)). However, for horizontally-aligned
elements or multiple columns, this strategy can fail. In Figure 10(b),
the legend text “Roc-SVM” might be considered closest to the brown
legend symbol for “CR-EM”. To address this issue, we must determine
if text lies to the left or right of the legend symbols. We first sort by
x-coordinate of the representative pixels for each legend symbol. Next
we check if the left-most and right-most pixel are closer to the left or
right side of the legend bounding box, respectively. If the left-most
pixel is closer, then text lies to the right (See Figure 10(b)), otherwise
text lies to the left.

Continuous color legends: We first identify if the legend gradient is
vertically or horizontally oriented. We do so by checking the alignment
of the pmin and pmax coordinates. For the horizontal case, we sort the
text bounding boxes by the x-coordinate of their centers. We denote the
center of the left-most and right-most text bounding boxes with ple f t
and pright respectively (see Figure 11). We map the value represented
by the text in both bounding boxes to ple f t and pright , respectively.
Finally, we extrapolate the values out to pmin and pmax. An analogous
approach applies for the vertical case.

In order to extract the values represented by the text, we first attempt
to parse the label text as number, including scientific notation (e.g.,
‘-10’, ‘15’, ‘4.5’, ‘3e-4’). Next, we verify if there is a modifier, such as
characters indicating units. We check if the text is using International
System units (e.g., ‘1M, ‘1k, ‘10M) and parse these as numbers (e.g.,
‘1k’ is converted to 1,000). We leave text parsing of other cases, such
as physical units of measurement, as future work.

5 END-TO-END PERFORMANCE

At first blush our pipeline might look complex, given the multiple
processing stages. An alternative approach might be to analyze a color
histogram for each image and skip the color legend identification step.
However, we found that the unbalanced number of pixels for each
color makes subsequent color extraction less accurate. Moreover, to
automatically infer a color mapping one must identify the legend region.
This step could increase the complexity of our pipeline and suffer from

error propagation (see discussion by Poco & Heer [22]). Instead, we
assume the legend regions are provided as input, as it is relatively easy
for a user to drag a rectangle over them.

The validations presented in §4 assume that output from a previous
step is perfect. However, without user intervention, an error gener-
ated in an earlier step can propagate through the pipeline, reducing the
final accuracy. As mentioned above, we present our results without
interdependence of the pipeline steps. Though users can manually fix
interpretation errors using our annotation interface, for some applica-
tions (e.g., analysis of visualizations practices “in the wild”) a fully
automatic method is required.

For an end-to-end analysis, we assume legend regions are given as
input to our pipeline. Our color and text extraction components then
depend on the output of legend type classification. However, there is no
interdependence between color and text extraction: both steps can be
performed in parallel as shown in Figure 5. For discrete color legends,
we achieve local F1-scores of 96% in the legend classification step,
90% in the color extraction step, and 87% in the legend text extraction
step. If we propagate errors, we have final F1-scores of 82% for color
extraction and 80% for the legend text extraction. For continuous color
legends, we have local F1-scores of 96% in the legend classification
step, 82% in the color extraction step, and 80% in the legend text
extraction step. If we propagate errors, we have final F1-scores of 79%
for color extraction and 77% for the legend text extraction.

6 APPLICATIONS OF COLOR MAPPING EXTRACTION

Our extraction methods can be used to support a variety of visualization
applications. For example, our work can be used to extend existing visu-
alization reverse-engineering tools [15,22,25,26] with support for color
encodings, improving tasks such as indexing for visualization search
engines [5]. Here, we contribute two novel user-facing applications:
automatic recoloring and interactive overlays.

6.1 Automatic Recoloring

Our first application performs automatic recoloring: given bitmap im-
ages as input, we produce new images that use perceptually-motivated
color encodings. This application works for both discrete and contin-
uous color legends. Figure 12 shows examples for four chart images:
the first row contains original visualizations and the second row shows
output images with new color encodings.

Discrete color legends. Given representative colors C = {c1, ...,cn}
inferred by our extraction methods and a target color scheme T =
{t1, ..., tn}, we create a transfer function ti = fdisc(ci) that simply maps
from one indexed color to another. For each pixel pi in the image, we
find the nearest color in C such that distcolor(ci,cs)< 2.5 and then set
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Fig. 13. Interactive Overlays. The first row contains input chart images. The second row shows interactive highlights of the data in response to
selecting legend values. The third row illustrates highlights in response to selecting marks in the plotting area. Sub-figure (m) shows a value
histogram for the selected pixels, generated by inverting the extracted color mapping.

pi to the color fdisc(ci). The distance constraint helps avoid recoloring
pixels that do not belong to the color legend (e.g., grid lines or text).

The bar chart in Figure 12(a) uses a sequential color encoding where
a categorical encoding might be more appropriate. In Figure 12(e),
our tool replaces the original scheme with a ColorBrewer palette. The
line chart in Figure 12(b) uses a discrete rainbow color map. Some
legend items (e.g., “RNN1” and “RNN4”) are difficult to discriminate.
In Figure 12(f) we retarget the color encoding to a more perceptually
effective scheme.

Continuous color legends. For continuous legends, we begin with
the extracted colors spanning the minimum and maximum points in
the color gradient ({ci | pmin < pi < pmax}), and a target continuous
color palette T parameterized on the interval [0,1]. We define a transfer
function ti = fcont(ci), such that ci and ti occur at the same relative
index in their respective color ramps. For each pixel pi in the image,
we search for the nearest color in C such that distcolor(ci,cs)< 2.5 and
recolor the pixel with fcont(ci).

The map in Figure 12(c) uses a multi-hue color gradient across
a domain spanning both negative and positive values. In response,
we recolor the image using a diverging color scheme as shown in Fig-
ure 12(g). Figure 12(d) uses a rainbow color scheme; in Figure 12(h) we
replace the rainbow with a perceptually-informed sequential scheme.

For these recoloring tasks, we need only extract the color information
provided in the legend. The actual legend text is not necessary, making
our tool robust to issues such as OCR error. However, as our next
application demonstrates, recovering the legend values can enable more
sophisticated interactions.

6.2 Interactive Overlays
Our second application adds interactive overlays [16] to static images to
support data querying and highlighting. Our web application generates
an interactive visualization from a static image input.

First, the system must locate the color legend. If automated iden-
tification (§4.1) fails, a user can simply draw a rectangle to isolate
the legend. Next we recover legend color and text information using

our extraction techniques. If a user notes any extraction errors, they
can use our annotation interface (§3.2) to correct them manually. The
application then generates an interactive visualization that supports
two-way interactions between the legend and plotting area. Users can
brush in either region to see corresponding information highlighted in
the other component. Figure 13 shows examples of such interactions
across four different chart types.

From legend to plot area. We provide two types of interactions:
point and range selection. These interactions are designed to highlight
selected data values, as illustrated in the second row of Figure 13.

Point selection is supported for both discrete and continuous color
legends. For discrete legends, users can click either a legend symbol
or the text associated with the symbol. We then identify the associated
representative color csel . Next, we overlay the plotting area with a
translucent white layer, using full transparency for pixels pi that satisfy
distcolor(csel ,ci) < 2.5. If the legend is inside the plot area (as in
Figure 13(e)), we make that region transparent as well. For continuous
color legends, a user can click anywhere within the color gradient to
select the color csel . Then, we similarly add a translucent overlay, but
with full transparency for pixels pi that satisfy ci = csel .

Range selection is often more appropriate for continuous color leg-
ends. When a user draws a rectangle (R) within the color gradient, we
select the set of colors Csel = {ci | pi ∈ R}. As with point selection,
we then add a translucent overlay with full transparency for pixels that
satisfy ci = cs, ∀cs ∈Csel .

From plot area to legend. For interactions with the plot area, we
similarly support both point and range selections. These interactions
are depicted in the third row of Figure 13.

Point selections can be performed visualizations with either discrete
or continuous color legends. For discrete legends, users can click a
data-encoding mark in the plot area. We then select the color csel
at the click position psel , and use it to identify the legend element
esel with representative color nearest to csel . Next, we overlay the
legend region with a translucent white layer. We use the information
in esel (i.e., text and color) to make the layer transparent over pixels



that lie inside the text bounding box or satisfy csel = color(esel). We
also add a layer over the plot area, with full transparency for pixels
that satisfy distcolor(csel ,ci)< 2.5. In this second layer highlights all
marks associated with the same esel (for instance, the multiple bars
highlighted in Figure 13(i)). For continuous legends, when a user clicks
in the plot area we select the color csel and search for the nearest color
in the legend. We proceed as before to highlight pixels in the plot area.
However in the legend region, we highlight only the nearest color in
the color gradient.

Our tool also supports range selections for continuous encodings. A
user can draw a rectangle (R) in the plot area, for which we retrieve
all contained colors Csel = {ci | pi ∈ R}. Then, for all colors in Csel ,
we find the nearest colors in the legend gradient and highlight them
(Figure 13(k)). In this case, we do not add an overlay to the plot area.

The interactions described above require only color information from
the legend. However, we can use the full mapping (i.e., inferred data
values) to enable additional features. Our tool calculates and displays
descriptive statistics for the data values indicated by the selected pixels.
For example, Figure 13(m) uses the data values associated with the
colors in Csel to create a histogram for the selected region.

7 LIMITATIONS

Our color legend classifier includes the category other, which we train
using random sub-images sampled from our corpus. An improvement
would be to collect real legend images for other encoding channels
(e.g., size, shape) and train our classifier to discriminate those.

Given the variability of color legend styles, we constrained the color
legend types supported. For example, we do not support grayscale
legends. Our color extractor for discrete color legends uses a grayscale
mask to remove text and grid elements from the legend. As a result,
all legend symbols in grayscale are also removed. However, if not all
the legend symbols are grayscale, we can recover them as explained
in § 4.3.1. We also do not support bi/trivariate color maps, which are
uncommon in the figures we collected. In the case of legend symbols
with repeated colors (e.g., “red” symbol with a solid line and “red”
symbol with a dashed line), our color extractor might fail because we
are using LAB coordinates in the clustering, and all the red pixels will
be near each other in the CIELAB space.

In the legend text recognition step, we use the techniques of Poco
& Heer [22]. However, OCR errors remain an issue in some cases.
Recurring challenges for text localization include the resolution of
the legend labels, spacing between labels and color elements, and
mathematical notation. Moreover, in this work we are not using the
“units” information included in some continuous color legends. For
applications such as indexing figures (e.g. for a scientific database),
accurately identifying units may be important.

We currently do not support accurate data value interpolation for
non-linear color gradients. To do so, our method must also (a) extract
intermediate value labels (not only minimum and maximum), (b) cor-
rectly associate the labels with positions in the color gradient, and (c)
infer the the type of scale function (e.g., log, square root) based on
the label values and spacing. Step (c) is relatively straightforward and
supported in prior work [22]. However, step (a) depends heavily on
OCR accuracy.

For our recoloring application, errors arise when
the legend includes colors that also occur in other
chart components (e.g., black for text and grid lines,
white for background). In Figure 12(g), the chart
title was affected by our transfer function because the
initial color gradient contains black as well.

In addition, we found that some bar charts contain
elements with variable colors (e.g., gradient fills).
This can lead to the same color occurring across
marks associated with different legend elements. For
instance, in the inline figure, the colors inside the two yellow rectangles
are the same, even though the two bars correspond to different legend
entries. As a result, our interactive overlay application does not high-
light the bars correctly. A more sophisticated color matching model is
needed to handle cases such as these shading gradients.

8 CONCLUSION

In this paper we presented methods for recovering color mappings from
static visualization images. To evaluate our approach we compiled an
annotated corpus of images and color legend information for 1,600
visualizations from academic documents, and demonstrated accurate
extraction of both discrete and continuous color encodings. While
we focused on the general case of bitmap images, components of our
system are directly applicable to structured image formats such as
vector PDF or SVG documents, where objects and text content might
be trivially extracted.

We also presented applications of our method for automatic re-
coloring and generating interactive visualizations from static images.
Conveniently, many of the features of these applications do not require
the full mapping from color to data value, for example supporting re-
coloring and highlighting based on extracted colors alone. However, as
demonstrated by interactive overlay application, access to the full color
mapping can provide even richer interactive capabilities.

To the best of our knowledge, this research contributes the first
approach to recover full color mappings from visualization images.
Going forward, we hope to improve our methods and explore additional
applications enabled by our approach.

An immediate future work item is to further improve the performance
of each stage in our pipeline, for example by addressing the limitations
enumerated above. Looking further out, we might also extend our
techniques to recover mappings for other non-spatial channels, such
as size, shape, and texture encodings. We might also extend our work
to support bi/trivariate color maps. Combining legend analysis with
reverse-engineering pipelines for spatial encodings [15, 22, 25, 26]
might enable rich indexing of visualizations, in turn supporting new
visualization search and retrieval applications.

Another area for future work is to perform a more thorough com-
parison with previous approaches. The closest work is Siegel et al.’s
approach [26] to extract legend symbols from discrete color legends.
An appropriate comparison would be to run our pipeline on Siegel et
al.’s annotated image dataset (1,000 annotated charts). For that, we will
need to parse the figure metadata and infer the legend regions using the
bounding boxes of the legend text and legend symbols. However, com-
paring text elements would be unfair because Siegel et al. assume that
the text information is given as input. Also, in Siegel et al.’s dataset the
legend symbols are annotated using bounding boxes; to compare with
our color extraction method, we will need to process each bounding
box region and extract the colors used.

We might also use our color extraction techniques to perform a large
scale analysis of the use of colors “in the wild”. We can analyze a large
collection of visualization images from academic documents across
different communities, identify common color schemes, and assess how
they may have evolved or disseminated over time.

To help enable such future applications, both our annotated visualiza-
tion image corpus and the source code for our color mapping extraction
methods are freely available at https://github.com/uwdata/rev.
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