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A B S T R A C T

Visual analysis of temporal networks comprises an effective way to understand the net-
work dynamics. It facilitates the identification of patterns, anomalies, and other network
properties, thus resulting in fast decision making. The amount of data in real-world net-
works, however, may result in a layout with high visual clutter due to edge overlapping.
This is particularly relevant in the so-called streaming networks, in which edges are
continuously arriving (online) and in non-stationary distribution. All three network di-
mensions, namely node, edge, and time, can be manipulated to reduce such clutter and
improve readability. This paper presents an online and nonuniform timeslicing method
that enhances temporal and streaming network analyses. We conducted experiments
using two real-world networks to compare our method against uniform and nonuniform
timeslicing strategies. The results show that our method automatically selects timeslices
that effectively reduce visual clutter in periods with bursts of events. As a consequence,
decision making based on the identification of global temporal patterns becomes faster
and more reliable.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Networks represent a useful and widely adopted structure to
model systems from distinct areas, such as computer science,
biology, sociology, and others [1]. A network is defined in
terms of nodes (instances) and edges (the relationship involv-
ing them) [2]. In this way, a network may be used to represent
the World Wide Web (Web pages connected by hyperlinks), an
organism cell (chemicals linked by chemical reactions), social
interactions, and many others [3]. In several situations, using
only information about nodes and edges may not be enough
to represent and comprehend the relations in the network. In
social network analysis, for example, the information of when
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the connections occur may be crucial to describe such relations
with less (or even without) loss of context.

The so-called temporal (or dynamic) network considers time
information in addition to nodes and edges [4]. It can be rep-
resented by G = (V, E), where V = {n1, n2, ..., nN} is the set of
nodes in the network and E = {e1, e2, ..., eM} is the set of edges.
In our context, each edge ei = (nx, ny, tk) connects two nodes
nx, ny ∈ V at a particular and discrete timestamp tk [5, 4]. Con-
sidering tend as the end of the observation period, 0 ≤ tk ≤ tend.
In fact, an edge that occurs at tk actually occurs in the interval
[tk, tk +τ), where τ is the temporal resolution [5]. To simplify, in
our context, self-edges (i.e., edges connecting a node to itself)
are removed [5]. In temporal networks, the presence of an edge
represents the occurrence of an event at the respective times-
tamp. Moreover, all events are previously known and available
to be used in the analysis (offline scenario) [4]. A temporal net-
work has a delimited observation period, its data usually fit in
primary memory and unrestricted random access is allowed.
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In several real-world applications, however, data are pro-
duced in a massive and continuous way (online scenario).
Streaming data that represent interactions among elements may
be naturally represented as a streaming network [6, 7, 8]. For
example, in a telecommunication context, phone calls form a
network between the involved phone numbers [9]. In the same
way, web pages and the links between them form a web net-
work. Methods for processing streaming networks require effi-
cient and real-time processing. This means that a streaming (or
online) algorithm, besides the restricted access to the stream
data (nodes/edges), must process the stream in a single scan, or
in a small number of scans [9]. We define a streaming network
S = {e1, e2, ..., em, ...} as a temporal network G = (V, E) as fol-
lows: ei = (nx, ny, tk), ei ∈ E, represents an edge that occurs
at a discrete timestamp tk, 0 ≤ tk ≤ ∞, between nx, ny ∈ V ,
|V | → ∞. Note that it is possible to have more than one
edge (event) per timestamp. This definition is different from
the ones that consider each event arriving in a different times-
tamp [10, 11, 12].

Both temporal and streaming networks can be analysed
through different strategies. Statistical analysis represents a
common approach and is useful to identify specific trends and
patterns in the data, being used, for example, in connection pre-
diction [13] and burst analysis [14]. When there is only a nu-
meric output, however, it may represent a “black-box” to the
user, thus impairing pattern comprehension. Another approach
involves Information Visualisation [15, 16], whose strategies
assist data analysis by providing interactive and graphical com-
putational tools, thus including the user in the entire process of
exploration and validation. An adequate Information Visualisa-
tion strategy allows a visual analysis that is as much intuitive as
possible and also helps the user in finding unexpected patterns,
anomalies, and other behaviours in the data, thus resulting in a
fast and reliable decision making. Examples of recent visuali-
sation methods applied to temporal and streaming networks can
be found in [5, 17, 18, 19, 20, 10, 21, 22, 23].

Network visualisation techniques, such as node-link dia-
grams [24, 25] and the Massive Sequence View (MSV) lay-
out [25, 26], suffer from visual clutter caused by the amount
of information, greatly impairing the analysis. The network
temporal resolution plays an important role in the layout con-
struction and, consequently, in the visual analysis. In several
scenarios, as, for example, when the network is temporally
sparse, changing the temporal resolution through the grouping
of events from subsequent timestamps – a process called times-
licing – may facilitate the analysis and highlight patterns that
would be difficult to see using the original resolution [17, 27].
Choosing the length of time that each resulting timestamp (also
known as timeslice) must have, however, is not a trivial task. A
naive and widely adopted timeslicing approach is to consider
timeslices of equal length to represent the network (uniform
timeslicing), each comprising, e.g., all events from 1 minute
or 1 day interval [28, 17, 29, 25]. Despite the simplicity, the
adopted length is a global, static, and pre-defined value that
does not faithfully represent the number of events and their dis-
tribution. In both temporal and streaming networks, such dis-
tribution is non-stationary and changes over time, so the times-

licing method should consider this nonuniform behaviour. Al-
though nonuniform timeslicing is often used in other contexts
(e.g., multithreaded communication [30], data transfer [31],
and systems performance degeneration analysis [32]), it has
only been considered recently in temporal network visualisa-
tion [33]. Despite recent advances, we are not aware of online
and nonuniform timeslicing methods, characteristics necessary
for streaming network visualisation.

In this paper, we propose an online and nonuniform times-
licing method that automatically adapts the network temporal
resolution scale according to the non-stationary distribution of
events over time. Our method allows the identification of vi-
sual patterns, mostly global ones, that would be lost or difficult
to find with a uniform timeslicing. Our focus is on online sce-
narios (streaming networks), which brings new challenges, as,
for example, the need for fast (often real-time) methods and
the immediate disposal of edges after processing [10]. Since
any method developed for online scenarios can be applied in
offline ones [6], our method can also be used to enhance tempo-
ral network analysis. Even knowing all events and having the
possibility of unrestricted random access, improving the overall
layout readability is already a challenging problem in temporal
network visualisation [29, 25]. Our proposal thus benefits both
scenarios.

The paper is organised as follows. Section 2 presents related
concepts and Section 3 discusses related work. Our timeslicing
method is presented in Section 4. Section 5 presents the method
evaluation through two case studies using real-world networks.
Finally, Section 6 describes the method’s limitations and Sec-
tion 7 discusses conclusion and future work.

2. Background

This section presents fundamental concepts and discusses
strategies focused on network visualisation and timeslicing.
The terms “timestamp” and “timeslice” will be used inter-
changeably.

2.1. Network Visualisation

The employment of an effective temporal network visualisa-
tion strategy helps the user in the network evolution comprehen-
sion and facilitates the identification of patterns, anomalies, and
other network properties. In this context, several visual strate-
gies may be adopted, such as matrix-based [34, 35] and circular
approaches [18], node-link diagrams [36, 17], and Massive Se-
quence View (MSV) layouts [37, 26]. Among these, node-link
diagrams and MSV represent the best strategies when the task
is to analyse the edge (event) distribution over time [18, 5].

Timeline-based visualisations. The Massive Sequence
View [37, 26] is a timeline-based layout [38] similar to Bio-
Fabric [39]. Its x-axis represents the timestamps and the y-axis
represents the nodes of the network. In this layout, nodes
cannot change their positions over time. Every time there is an
edge between a pair of nodes, a vertical line is drawn linking
them in the respective timestamp. The construction of MSV
using the tabular (raw) data is illustrated in Fig. 1(a,b).
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Fig. 1. Network visualisation and possibilities of temporal dimension manipulation. (a) Tabular (raw) data; (b) Massive Sequence View (MSV). (c) Temporal
Activity Map (TAM). (d) Node-link diagram showing the network state at time t = 7. (e) Temporal dimension manipulation – observation time sampling.
(f) Temporal dimension manipulation – timeslicing.

When applied to real-world networks with a large amount
of data, MSV suffer from visual clutter caused by overlapping
edges, and thus important patterns may not be perceived. The
Temporal Activity Map (TAM) [17], which omits all edges of
the MSV layout and changes the shape of nodes from circles
to squares for better sense of continuity, represents an alterna-
tive layout useful to identify patterns based in the node activity
(Fig. 1(c)). However, when the edge visualisation is still needed
or the amount of visual information in the layout is still large,
these issues must be solved.

Animated visualisations. Contrary to timeline-based layouts,
which show all timestamps of the network in a single image
(time-to-space mapping [38]), animated layouts rely on a series
of images that are used as animation frames (time-to-time map-
ping), each of them representing a different timestamp and con-
taining the nodes and edges active at the moment. The matrix
layout [40, 41], for example, visually represents the network
adjacency matrix and can be used to analyse the network evo-
lution if associated with animation. Another popular represen-
tation is the node-link diagram (Fig. 1(d)). In this layout, nodes
are spatially placed on the screen with edges (lines) connecting
them [5]. These layouts may also suffer from visual clutter due
to the amount of information in real-world networks.

Improving layout readability. One strategy to reduce clutter
and improve readability in layouts that explicitly show the
edges is by changing the node positioning, which affects the
length of the edges and, consequently, the number of overlaps
and visible patterns. For this purpose, several node ordering al-
gorithms have been proposed in the literature. For the MSV lay-
out, examples include naive approaches, such as those based on
the node appearance order, degree (in/out) and lexicographic, as
well as more complex approaches, such as Optimized MSV [26],
Recurrent Neighbors [17], and Community-based Node Order-
ing (CNO) [25]. These strategies, however, are not suitable

for streaming networks since they require all edges in primary
memory.

Besides node positioning, sampling strategies can also im-
prove layout readability by reducing the number of edges under
analysis [25, 29, 42, 43]. In this case, not only edges can be
sampled, but also nodes – only those edges connecting the sam-
pled nodes are maintained. In the case of node-link diagrams,
because of the difficulty to maintain the mental map, strategies
for reducing visual clutter in this representation (through node
positioning [44], edge-bundling [45], and others) are generally
ineffective even if combined with animation [5].

Finally, a strategy suitable for reducing clutter in various lay-
outs, regardless of the exhibition of edges or timeline/animation
aspects, is to change the network temporal resolution scale
through timeslicing strategies, an approach that is described in
details in the following.

2.2. Network Timeslicing

Along with node positioning and sampling strategies, the
temporal dimension can also be manipulated to improve layout
readability. In this case, one possibility is to choose an obser-
vation time of interest (e.g., only the first or the second day of
the network), as adopted by Zhao et al. [29] (see Fig. 1(e)). An-
other possibility is to change the network temporal resolution
scale through timeslicing strategies. Timeslicing in our context
means that events from subsequent timestamps will be grouped
in a single timestamp [28]. The higher the temporal resolution
scale, the more subsequent timestamps will be grouped into one
and, as a consequence, the longer will be the time interval rep-
resented by the resulting timestamp.

Uniform timeslicing. In the simplest timeslicing approach
(known as uniform timeslicing), the temporal resolution scale is
a global and static value, so all timestamps of the network rep-
resent the same length of time without considering cases where
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the network has non-stationary event distribution. As an exam-
ple, if each timestamp in resolution 1 represents a 20-second
interval, then each timestamp in resolution 2 will represent a
40-second interval. Linhares et al. [17] change the timestamp
in which each event occurs by following a uniform timeslicing
as follows (Eq. 1).

tnew =

⌊ tori − ts
τ

⌋
τ + ts (1)

where tnew is the new timestamp of the event, tori is the times-
tamp of the event in the original temporal resolution, ts is the
first timestamp of the network and τ is the desired resolution
scale. Repeated events (edges) are considered as a single one
if their timestamps are merged. As a result, one may identify
temporal patterns that would be difficult to see in the original
resolution, especially in temporally sparse networks [17]. This
timeslicing process is exemplified in Fig. 1(f), where in resolu-
tion 2 (new resolution defined by τ = 2) each pair of adjacent
timestamps from the original network (Fig. 1(b)) are merged
into one, thus the events represented in (A,B,0) and (A,B,1) be-
come a single event in resolution 2 (A,B,0) and so on.

In uniform timeslicing, such global and static temporal res-
olution scale is empirically chosen through initial exploratory
analyses or by a domain specialist that knows a priori which
one is adequate for the analysis given the event distribution.
This scale does not consider the underlying network structure
and thus may not faithfully represent the non-stationary distri-
bution of events over time. Notwithstanding, in temporal net-
works all events are available in the visual analysis, so different
scales may be tested until an adequate one is found.

In streaming scenarios, although one can adopt uniform
timeslices as well, the employment of uniform approaches is
even more difficult due to the non-stationary distribution of fu-
ture events. Exploratory analysis may not be possible because
usually there are no a priori data to support the decision. Since
the event distribution can change, considering only an initial set
of events in the stream to support the choice may be inefficient
as well. This is often ignored when it is assumed a uniform
event distribution (also referred as uniform event density), as if
the events came in consecutive timestamps [10, 11, 12].

Nonuniform timeslicing. Given the many drawbacks of uni-
form timeslicing, it is necessary mechanisms to create times-
tamps that represent different lengths of time, which must be
defined according to the non-stationary distribution of events
over time. For a given temporal network, we call nonuniform
timeslicing the presence of timestamps with different lengths.

3. Related Work

Timeslicing in network mining. An effective timeslicing is
useful for areas beyond visualisation. Studies from the network
(graph) mining community have shown that the timeslicing im-
pacts the network structure and mining efficacy [46, 33]. To de-
fine suitable timeslices in this context, there are basically three
strategies [33]. The first one comprehends the analysis of the
accuracy obtained by different timeslicing choices in the task
of interest (e.g., event prediction) [47]. Another, more popular,

involves the minimisation of the variance of a given network
statistic (e.g., exponent of degree distribution) [48, 46, 49]. Not
least, one can also define timeslices based on the similarity be-
tween the network structure from consecutive timestamps. This
last approach has been used not only in mining tasks (e.g., [50]),
but also in the visualisation of (spatial and non-spatial) tempo-
ral networks (e.g., [51, 52]).

Timeslicing in network visualisation. In (non-spatial) tem-
poral network visualisation, several studies employ uniform
timeslicing in the networks under analysis [17, 29, 5, 25, 28].
In [5], for instance, the authors analyse a high-school network
considering each timestamp of the MSV layout as a three-
minute interval whilst the original network temporal resolution
is a 20-second interval per timestamp. In the same way, the
Enron network [53] was analysed using a particular temporal
resolution scale in [42] and a different one in [17].

Small MultiPiles [52] is a matrix-based visualisation that
creates nonuniform timeslices in the form of piles contain-
ing timestamps with similar network structure (similar adja-
cency matrices). As the interval comprehended by each pile
depends on changes in the network structure, the identifica-
tion of topology-based patterns is facilitated. More recently,
Wang et al. [33] proposed a nonuniform timeslicing method
for temporal network visualisation that creates timeslices with
a balanced number of events (equal visual complexity) by us-
ing an approach similar to the histogram equalisation, well-
established in the discipline of digital image processing. Their
strategy (hereafter named Balanced Visual Complexity – BVC)
uses more timestamps to represent high-activity periods (with
bursts of events) and less timestamps otherwise.

The method we propose in this paper goes in the opposite di-
rection of BVC, i.e., we also consider that high-activity periods
contain too much visual information, but we propose to rep-
resent them with higher resolution scales (consequently reduc-
ing the number of timestamps) instead of redistributing them in
more timestamps. In the produced layout, the identification of
global temporal patterns (e.g., birth and death of highly-active
groups of nodes, bursts of events) is facilitated. Contrary to
Small MultiPiles, our method is layout-agnostic, i.e., it can
be used to enhance a variety of visualisations, from animated
(e.g., node-link diagrams) to timeline-based ones (e.g., TAM,
MSV). Finally, contrary to both BVC and Small MultiPiles, our
method runs online and thus is suitable for streaming network
analysis. To the best of our knowledge, no other study has pro-
posed online and nonuniform timeslicing methods for network
visualisation.

4. Online and nonuniform timeslicing method

The idea behind our method is that intervals with the same
length but that have different event densities must be repre-
sented by different resolution scales. Having more events lead
to higher resolutions and consequently in fewer timestamps, so
the amount of visual information is reduced to an appropriate
level in an attempt to optimise the identification of patterns.

Our method considers the number of events and their distri-
bution on a fixed-size window w. The window is divided into
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wsize slots. Each slot represents a timestamp in the current res-
olution and contains all events that exist in such timestamp. In
the sequence, we use this window to decide the temporal reso-
lution scale that will be applied to the next window (i.e., next
timeslice). After computing such a new resolution scale, it is
necessary to change the timestamp of incoming events accord-
ingly. We summarise our approach in Algorithm 1 and provide
details in the sequence.

Algorithm 1: Nonuniform timeslicing method

1 foreach timestamp ti in the stream do
2 if end of a window then
3 compute new resolution σn ; // Eq. 2

4 end
5 foreach event e arriving in ti do
6 if ti does not belong to the first window then
7 change timestamp of e using σn ; // Eq. 4

8 end
9 e.status← processed;

10 end
11 end

Initially, we adopt the original resolution scale in the first
window (cold start). From there, the resolution value σn of the
next non-overlapping window considers two aspects of the cur-
rent window: its resolution value and its event density (Eq. 2).

σn = bδσc + (1 − δ) fs(wsize)c (2)

where δ (0 ≤ δ ≤ 1) is a constant that determines the impor-
tance of the current resolution value (σc) in the computation of
the new resolution. The component fs(wsize) is presented in the
following.

Recent elements are more relevant to the current state of the
stream than old elements, so an approach commonly used to
discount older information is the forgetting mechanism fad-
ing sum [54]. According to [55], the fading sum S x,α(i)
over the elements of a stream x is computed at time i as
S α(i) = xi + α S α(i−1), where S α(1) = x1 and α (0 � α ≤ 1)
is the fading factor, i.e., a constant such that the higher its value,
the more importance is given to old elements. In our context,
the component fs(wsize) from Eq. 2 is a fading sum that quanti-
fies the event density within the current window, while reducing
the importance of old events inside the window. It is computed
according to Eq. 3:

fs(i) =
xi

twc
+ α fs(i − 1) (3)

where xi is the number of events in the slot i of the window, twc

is the number of slots in the window that presents at least one
event (constant for a given window – if twc = 0 then the win-
dow has no events, so σn = 0), fs(1) = x1

twc
is the initial term.

The higher the fading factor α, the more importance is given to
old events and, consequently, the higher the resulting resolution
scale. The rationale behind computing fs(wsize) according to
Eq. 3 is to obtain a weighted event density d = fs(wsize), d ∈ R,

that gives greater importance to recent events inside the win-
dow under analysis (through the fading factor component); the
denser the most recent timestamps, the higher d.

Back to Eq. 2, if σn = 0, then σn is set as the average value
of all past resolutions, so large inactivity periods (i.e. without
events) may be represented by a resolution scale different from
the original. With this decision, our method reduces not only
the number of timestamps devoted to intervals with high den-
sity, but also the idle ones.

Within a new window, whose resolution scale is the com-
puted σn, it is now necessary to change the timestamp attribute
of each incoming event. To meet cases where exists an inac-
tivity period between the last event of the previous window and
the first event of the new window, we decompose the computa-
tion of the new timestamp tnew of an event e into two parts, one
considering all past timestamps within the new window (which
are, therefore, under resolution σn – see the first component
of Eq. 4), and another considering all timestamps between the
last event of the previous window and the beginning of the new
window (which are, therefore, under a resolution that is (poten-
tially) different from σn – see component tre f in Eqs. 4 and 5).

tnew(e) =

⌊
torig(e) − tini

σn

⌋
+ tre f (4)

where torig(e) is the timestamp of e in the original resolution,
tini is the first timestamp considered by the current window, and
tre f is the timestamp that acts as a reference in order to apply
the resolution scale in inactive timestamps. The value of tre f

is computed only when dealing with the first event of a new
resolution (new timeslice) and is defined according to Eq. 5:

tre f =

⌊
tini − torig(e′)

σc

⌋
+ tnew(e′) (5)

where torig(e′) is the original timestamp of the last event from
the previous window (event e′) and tnew(e′) is the timestamp of
e′ in σc.

A

B

C

t    (e’) = t    (e’) = 70orig new

RESOLUTION 1

t = 100
(change resolution)

e’

RESOLUTION 2

t    (e) = 115new
t    (e) = 130orig

e e

Fig. 2. Example of timeslicing using our proposal. In resolution 2, the
timestamp of e is changed from 130 to 115.

Fig. 2 shows an example of how the timestamp of an
event is changed according to Eq. 4. In this figure,
torig(e′) = tnew(e′) = 70 because, up to this point, the
original resolution scale (1) was maintained in the network.
Note that a new window began at t = tini = 100 with
resolution σn = 2. Any incoming event that belongs to this
new window must therefore follow this resolution. In this
sense, the timestamp attribute of the event e is changed from
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first day second day
2B2A2A 4B4A Tch

Fig. 3. TAM layout showing four classes and all teachers of the Primary School network using resolution 1 (original). The interval between both days
(from 5.21pm to 8.29am) does not present any edge and was omitted due to its size in the layout. Nodes are grouped according to the classes and grades.
The “Tch” profile refers to the teachers of the school. The layout is horizontally large, dense and has few visible patterns, as, for example, the absence of
Classes 4A and 4B near the end of the second day. Supplementary Fig. (a) shows the same image in a better quality and with the omitted interval.

torig(e) = 130 to a different value (tnew(e)). In this example,
σc = 1 and tre f = b(100 − 70)/1c+70 = 100 (Eq. 5). According
to Eq. 4, tnew(e) = b(130 − 100)/2c + 100 = 115. As expected,
each timestamp in resolution 2 is twice the time interval repre-
sented by a timestamp from resolution 1, so torig(e) = 130 and
tnew(e) = 115. Assuming an event e′′ with torig(e′′) = 131, then
tnew(e′′) would be equal to 115 as well, and so on. As stated,
Eq. 4 takes into account inactivity periods, respecting their oc-
currence in the converted timestamps.

As we consider only the most recent window of events in
the computation, our method is capable of handling from tem-
poral networks with few timestamps to potentially unbounded
streaming networks. If the method presents high performance
in the worst-case scenario of a highly-cluttered window, then
every window with less or equal visual clutter will be also im-
proved, regardless of the number of timestamps in the network.

5. Case Studies

In this section, we present visual analyses of two real-world
temporal networks manipulated timestamp-by-timestamp to
simulate streaming scenarios. In other words, the elements
(edges/nodes) of each timestamp flow in and out in a way that
the method (i) does not have access to all network data (there-
fore it is not possible to perform random accesses), (ii) does not
know future elements or the number of timestamps, (iii) does
not storage past elements (except those from the current win-
dow, that are also discarded once the window is processed).
Our goal is to compare our nonuniform timeslicing method
against the original network resolution, uniform timeslicing ap-
proaches, and BVC [33].

In all analyses, we consider resolution 1 (Res. 1) as the orig-
inal resolution of the network. After empirical tests, we defined
δ = 0.2 as the importance of the current resolution in the com-
putation of the new one (see Eq. 2). To validate our method
and illustrate its application, we rely on MSV, TAM and node-
link diagrams. All visual analyses were performed using the
software DyNetVis [56], which implements our method and all
layouts presented in this section. DyNetVis is freely available
at www.dynetvis.com.

5.1. Primary School

The first network, Primary School [57, 58], represents face-
to-face interactions (contacts) involving teachers and students
of a primary school between October 1st - 2nd of 2009. A face-
to-face interaction is recognised by Radio-Frequency Identifi-
cation (RFID) sensors from badges. Whenever two individuals
are in front to each other (from 1 up to 1.5 meters), a contact

is registered in a time interval of 20 seconds. Such interval
corresponds to the original temporal resolution of the network
(Res. 1), i.e., each timestamp in Res. 1 comprises a 20-second
interval. This network contains 242 nodes and 125,773 edges
distributed in 5,846 timestamps in Res. 1. The data represent
contacts from the first to fifth grade, with each grade having
Classes A and B (for convenience, we will adopt terms such
as “4A” and “4B” when referring to a certain class of a given
grade). The majority of contacts occurs between students of the
same class and each class has an assigned teacher [58].

Fig. 3 presents the TAM layout for four classes and all teach-
ers of the Primary School network in resolution 1 (original).
The nodes are grouped according to the classes and grades.
The layout is horizontally large (due to the number of times-
tamps), which impairs the identification of global patterns and
requires more screen space and scrolling, which impairs the
user’s perception of temporal changes during the network evo-
lution (mental map preservation [59]). Moreover, the layout is
dense (a lot of events over time) and only a few patterns are eas-
ily identified, as, for example, the absence of Classes 4A and 4B
students near the end of the second day. The network does not
register contacts during sports activities [58], so it is possible
to assume that these classes were involved in such activities or
dismissed. Another possibility is that the students were taking
exams or other activities without interacting with each other.

5.1.1. Parameter Analysis
To improve pattern identification, we applied our nonuniform

timeslicing method in the Primary School network. Different
values for α (fading factor) and wsize (window size) were evalu-
ated and their impact in the adopted resolution scales is shown
in Fig. 4. In the figure, the whole network is considered (activ-
ity in day 1, interval, activity in day 2). By comparing the plots
in which the α value is the same (α = 0.9 in (a,c) and α = 0.99
in (b,d)), it is possible to see that a large window makes that the
perception of changes in the number of events be late, delaying
the resolution change. As a consequence, patterns related to
these changes may be lost or identified only many timestamps
later. This is especially relevant in streaming network analysis,
in which the past data may have already been discarded. By
comparing the plots in which the wsize is the same (wsize = 50 in
(a,b) and wsize = 200 in (c,d)), one can notice higher resolution
values when adopting higher α. This is expected since high α
values increase the importance of old events. Finally, the plots
show the resolution adopted in the interval between both days
of the network, in which there is no event. This value is com-
puted based on the average value of the past resolutions. This
decision is related to the space of the layout required to repre-
sent such interval, which would be many times greater in the

www.dynetvis.com
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Fig. 4. Our nonuniform timeslicing and the relation between the adopted
resolution scales and the event distribution for the Primary School net-
work. (a) wsize = 50 and α = 0.9 (1,443 timestamps). (b) wsize = 50 and
α = 0.99 (353 timestamps). (c) wsize = 200 and α = 0.9 (4,880 timestamps).
(d) wsize = 200 and α = 0.99 (541 timestamps). The choice of the Fad-
ing Factor (α) and the window size (wsize) affects the resolution scale and,
consequently, the layout and visible patterns.

5.1.2. Visual Analysis
Temporal Activity Map (TAM). Fig. 5 shows TAM layouts for
different timeslicing scales considering the same four classes
and teachers from Fig. 3. Fig. 5(a-e) shows TAM layouts for
uniform timeslices adopting different resolutions (Res. 10, 25,
39, 100, and 200, respectively). Fig. 5(f) shows the TAM layout
generated by our nonuniform timeslicing method (wsize = 100
and α = 0.99, chosen empirically). Resolutions 10, 25, and
39 (Fig. 5(a-c)) were chosen because they represent the lower,
the average and the higher resolution values adopted by our
method for this network. Resolutions 100 and 200 (Fig. 5(d-
e)) are arbitrary values. As expected, higher resolution values
generate denser and (horizontally) smaller layouts, which im-
pairs the visual analysis and the identification of patterns. Our
method (Fig. 5(f)), however, automatically defines resolution
scales that represent appropriate levels of visual density.

The adopted timeslicing strategy highly affects pattern iden-
tification. Fig. 6 presents visual analyses over the TAM lay-
outs generated by our method (adopting wsize = 100 and
α = 0.99, Fig. 6(a)) and by uniform timeslices using resolu-
tions 25 and 200 (Fig. 6(b,d), respectively). These are the same
layouts from Fig. 5(f,b,e). The layout generated by BVC is
also considered (Fig. 6(c) – for a high quality image of BVC’s
layout, please see Supplementary Fig. (b)). In the best-case sce-
nario, at least seven patterns can be identified: (1) all students
from class 2B joined the network after the other classes and the
group of teachers; (2) lunch break – several students go home
for lunch, which reduces the number of nodes in such inter-
val [58]; (3) there is no interaction involving class 2B students
in a time interval near the end of the first day – probably due

(a)

2B2A2A 4B4A Tch

(e) (f)

(c) (d)(b)

Fig. 5. TAM layouts showing four classes and all teachers of the Primary
School network according to our nonuniform timeslicing method and five
uniform resolution scales. (a) Res. 10. (b) Res. 25. (c) Res. 39. (d) Res.
100. (e) Res. 200. (f) Our method (wsize = 100 and α = 0.99).

to sports activities [58]; (4) absence of Classes 4A and 4B stu-
dents near the end of the second day; (5) two teachers left the
network after lunch in the second day – probably the teachers
from Classes 4A and 4B; (6) there are students that did not join
the network in the first day; and (7) inactivity period due to the
absence of classes (from 5.21pm to 8.29am).

Our method allows the identification of all seven patterns
(Fig. 6(a)), being six of them considered as easy to found (1-
5, 7). Pattern 6 is harder to identify because of the method’s
cold start (adoption of resolution 1 at the beginning of the lay-
out), which pollutes the layout and impairs the perception of
this pattern. Although this original resolution serves only as a
start point, considering it inside the layout facilitated the per-
ception of pattern 1, that can also be noticed when adopting
only resolution 1 in the analysis (see Fig. 3), but not as fast
as with our proposal. Patterns 2, 5, and 6, on the other hand,
cannot be identified with resolution 1 (Fig. 3). By adopting a
uniform timeslicing using resolution 25 (Fig. 6(b)), all seven
patterns can be identified as well, five of them being considered
as easy to found (2-5, 7) and two of them being a little harder
(1,6). Although this layout allows the identification of all pat-
terns, recall that this resolution is the average value considered
by our nonuniform method, which supports our method’s qual-
ity. By considering BVC in the network analysis, one may see
the event redistribution caused by BVC’s histogram equalisa-
tion. As a consequence, pattern 7 is lost. Due to the number of
timestamps, patterns 5-6 are also lost and patterns 1-3 are dif-
ficult to perceive. Only pattern 4 is considered easy to found.
Such pattern, however, is also easy to identify with our method
and with uniform resolutions 1 and 25. By using the uniform
resolution 200 (Fig. 6(d)), patterns 1 and 3 are lost and only pat-
terns 5-7 are considered as easy to identify. Note that pattern 6
is more easily perceived in this layout, so a uniform timeslic-
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Fig. 6. Visible patterns in TAM layouts generated by different timeslicing approaches for the Primary School network. (a) Our method (wsize = 100 and
α = 0.99). (b) Res. 25. (c) BVC. (d) Res. 200. A maximum of seven patterns can be identified: (1) class 2B students joined the network after the others;
(2) lunch break; (3) no interaction involving class 2B students near the end of the 1st day; (4) absence of Classes 4A and 4B near the end of the 2nd day; (5)
two teachers left the network after lunch in the 2nd day; (6) some students did not join the network in the 1st day; and (7) inactivity period. Continuous
rectangles represent patterns considered as easy to identify. Dotted rectangles represent patterns with difficult perception. Supplementary Fig. (b) shows
BVC’s layout in a better quality.

ing that considers a higher resolution value may be useful in
specific scenarios as well.

In summary, our method reduces the amount of visual infor-
mation to an appropriate level that optimises the identification
of global patterns that are lost or difficult to perceive with other
strategies, including BVC. Our method for this network auto-
matically divided the layout in 393 timestamps (against 5,845
from BVC) while preserving all seven analysed patterns. Less
timestamps leads to less screen space and decreases the need
of (horizontal) scrolling, which tends to facilitate the percep-
tion of temporal changes in the network (better mental map
preservation). Considering uniform timeslicing, one should test
different resolution scales until the better one is found. This
approach, however, is only possible when dealing with (non-
streaming) temporal networks (see Section 2.2). Our method
not only provides adequate timeslices, but is suitable for stream-
ing scenarios in which events are continuously arriving in non-
stationary distribution.

Node-link diagram. Since streaming (online) analysis usually
relies on animated visualisations, and given that BVC was orig-
inally designed for node-link diagrams [33], we also performed
a comparison between our method and BVC considering ani-
mated node-link diagrams. Our goal is to analyse questions re-
lated to the current/recent development of the network. Recall
that our method automatically defined a number of timestamps

that is many times fewer than with BVC (393 vs 5,845). We
therefore applied a uniform timeslicing over the BVC’s result
in order to have the same number of timestamps on both meth-
ods (393). As this would not be possible in real-world stream-
ing scenarios, our analysis using TAM did not consider such a
manual setting, i.e., the comparison took into account the dif-
ferent and automatically defined numbers of timestamps.

Fig. 7 shows a comparison between BVC (top) and our
method (bottom) with respect to the end of the first day at pri-
mary school. With our method, one can easily see when the
last students and teacher leave the school and the inactivity pe-
riod starts (tk, tk + 1, tk + 2). Only several timestamps later
(tk + n), students and teacher come back to school (second day
in the network). With BVC, one cannot perceive the gradual
decreasing of students at the end of the first day. Moreover, as
expected with BVC, the inactivity period is totally lost: there
are students/teachers in all snapshots from tk to tk + n.

In another comparison, Fig. 8 shows the students from 4A
and 4B leaving the school on the second day. With both BVC
(top) and our method (bottom), it is possible to see they leav-
ing. Our method, however, allows one also to see a lot of in-
teractions a few moments before (snapshot at t j). Such burst of
interactions (that involves all school classes and not only 2A,
2B, 4A, and 4B) refers to the lunch break. As can be seen with
our method, students from 4A and 4B left the school just af-
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2B2A2A 4B4A Tch

time tk  t  + 1k  t  + 2k  t  + nk

Fig. 7. Comparison between BVC (top) and our method (bottom) with re-
spect to the end of the first day and the inactivity period at primary school.
With our method it is possible to perceive the gradual decreasing of stu-
dents at the end of the first day (time tk and tk + 1) and also when the
inactivity period starts (tk + 2).

ter lunch. This perception, that is not possible with the node-
link diagram from BVC, is also supported by the analysis using
TAM (Fig. 6, pattern 4).

2B2A2A 4B4A Tch

time tj  t  + 1j  t  + 2j

Fig. 8. Comparison between BVC (top) and our method (bottom) with re-
spect to students from 4A and 4B leaving after lunch in the second day of
school. With our method it is possible to identify a lot of interactions a few
moments before the students leave school (snapshot at t j).

Massive Sequence View (MSV). The visual analysis can be
performed from a different perspective by showing only edges,
as illustrated in Fig. 9, that shows the interactions involving
Classes 2A, 2B, and 4A over a MSV layout generated by our
nonuniform timeslicing (wsize = 100 and α = 0.99). This layout
reaffirms: (i) students from class 2B joined the network after the
others; (ii) students from class 4A left the network earlier than
the others in the second day; (iii) the absence of the majority
of 2A students, as well as 2B students, during a period after the
lunch break in the first day. Besides, this layout reveals new
patterns, such as the perception that the only two students from
class 2A that stayed in the network during the time interval af-
ter lunch in the first day connected to one another. Moreover,

the layout shows that students from one class have few inter-
actions with students from other classes, with the majority of
these interactions occurring during lunch. Not least, students
from the 2nd grade interact more between themselves than with
class 4A. This behaviour is also observed in the rest of the net-
work (a lot of interactions among students of the same grade
and few interactions involving different grades). These situa-
tions are expected in the network [58] and easily perceived in
this layout.

2A

2B

4A

2A

2B

4A
pattern 2

pattern 1

resolution 1 lunch inactivity lunch

Fig. 9. MSV layout with our nonuniform timeslicing (wsize = 100 and
α = 0.99) showing the interactions among Classes 2A, 2B and 4A. Pat-
tern 1: many interactions between 2A and 2B during lunch. Pattern 2: few
interactions between 2B and 4A in the network.

5.1.3. Event Distribution
Fig. 10 shows the spread of events over time according to

different timeslicing approaches: the original resolution, BVC,
our method (wsize = 100 and α = 0.99), and uniform Res. 25.
The absence of events in the middle of plots (a,c,d) corresponds
to the inactivity period between both days of the network.
While BVC (Fig. 10(b)) changes the event distribution be-
cause of its histogram equalisation, our method (Fig. 10(c)) pro-
vides a distribution similar to those from uniform approaches
(Fig. 10(a,d)). Since our timeslicing adopts the original resolu-
tion in the first window (cold start), one may see a “shift” in the
time dimension at the plot (Fig. 10(c)).
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Fig. 10. Spread of events according to different timeslicing approaches for
the Primary School network. (a) Res. 1. (b) BVC. (c) Our method (wsize =

100 and α = 0.99). (d) Res. 25. “norm(e)” refers to the normalisation of the
number of events to values between 0 and 1.

Fig. 11 shows the empirical cumulative distribution func-
tion (ECDF) considering the events from our method’s layout
(wsize = 100 and α = 0.99, Fig. 11(a)) and from resolution 1’s
layout (Fig. 11(b)). Our method produces less timestamps with-
out events when compared with Res. 1 (36.6% vs 47% – blue
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dotted lines), which is justified by the resolution scale used in
inactivity periods, that is different from the original. Further-
more, 25.4% of the time contains very few events in our layout
(cold start window). By observing the third quartile (red dotted
lines), after 75% of the time our layout contains a maximum
of 213 events per timestamp (26% of the maximum number of
events per timestamp), while in Res. 1 the number of events per
timestamp is almost 43% of the maximum number of events per
timestamp (40 out of 94 events).
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Fig. 11. Empirical cumulative distribution function (ECDF) and event dis-
tribution (ED) considering the events from the Primary School network.
(a) ECDF our method (wsize = 100 and α = 0.99). (b) ECDF Res. 1. (c) ED
our method (393 timestamps, wsize = 100 and α = 0.99). (d) ED Res. 1
(5,846 timestamps).

5.2. Enron

The second network, Enron [60, 53], contains email com-
munications from Enron Inc., a former energy company in-
volved in the biggest American accounting fraud [50]. The net-
work is composed of 148 nodes and 24,667 edges distributed in
1,346 timestamps, each representing one day in Res. 1 (from
Nov. 4th 1998 to July 11th 2002) [17]. Enron was studied
by several works in literature, from offline visual analysis us-
ing MSV (e.g., [17, 26, 29]) to streaming-fashion mining tasks
(e.g., [50]). Unlike the Primary School network, whose number
of events varies a lot in each day and which contains a large time
interval without any event (the period between the two days),
the Enron network presents a growing number of events over
time. We applied our method in the network to analyse the evo-
lution of the resolution under this circumstance.

5.2.1. Parameter Analysis
Fig. 12 presents our method’s behaviour under different val-

ues of wsize and α for the Enron network. Comparing the plots
(a,c), it is possible to see the impact of the fading factor in the
resolution computation. As can be seen, the high number of

events near the end of the network is reflected in the timeslicing
for the two α values tested. Comparing the plots (b,c,d), one
can see how frequent the timeslicing occurs according to the
window size. As discussed, large windows make the change in
the resolution scale less frequent and, as a consequence, each
resolution may not faithfully represent the different number of
events and their distribution. One can see such situation occur-
ring in the Enron network by analysing the resolution evolution
under wsize = 200 and α = 0.99 (Fig. 12(d)): at the end of
the network, the number of events decreases abruptly, but the
resolution scale remains high.
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Fig. 12. Our nonuniform timeslicing and the relation between the adopted
resolution scales and the event distribution for the Enron network. (a)
wsize = 100 and α = 0.9 (921 timestamps). (b) wsize = 50 and α = 0.99 (357
timestamps). (c) wsize = 100 and α = 0.99 (448 timestamps). (d) wsize = 200
and α = 0.99 (579 timestamps).
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Fig. 13. Impact of different fading factor (α) values on the layout (wsize =

100). Different α lead to different visual patterns. The change in the node
colour represents a change in the resolution scale (new timeslice). Node
ordering defined by Recurrent Neighbors [17] using resolution 1.

Fig. 13 shows an approximation of the same time interval
(near Dec. 12th, 1999 to near May 31th, 2000)1 and the same
group of nodes in three distinct layouts obtained by adopting

1Since the resolution scale may aggregate different days in a single times-
tamp, the first timestamp may also represent few days before the first day of
the interval depending on the adopted resolution. In the same way, the last
timestamp may also represent few days after the last day of the interval.
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Fig. 14. TAM layouts generated by different timeslicing approaches and their visible patterns in the Enron network. (a) Our method (921 timestamps,
wsize = 100 and α = 0.9). (b) Resolution 2 (673 timestamps). (c) BVC (1,345 timestamps). (d) Resolution 7 (193 timestamps). Depending on the layout,
a maximum of five visual patterns can be identified: (1) weekdays, in which there are interactions among nodes, and weekends, that are days without
interactions; (2) perception of the growing number of events over time; (3) identification of highly active groups of nodes; (4) a time interval with a burst
of events near the end of the network; and (5) abrupt decrease in the number of events followed by the end of the network. Node ordering defined by
Recurrent Neighbors [17] using resolution 1.

wsize = 100 and three different fading factor values (α = 0.9,
α = 0.99 and α = 0.99999). The first layout, with α = 0.9,
maintained the original resolution scale during the whole inter-
val. By doing so, each timestamp refers to a 1-day interval and
so it was possible to identify days without events. Such days are
usually weekends and holidays, such as the highlighted week-
end May 28th − 29th, 2000 and holiday May 30th, 2000 (Memo-
rial Day). By adopting α = 0.99, one can see that the week-
end/holiday pattern is lost due to the aggregation of days in a
single timestamp. Another pattern, however, is revealed: it is
easier to identify a node without interactions, i.e., a person in
the company that did not receive or send any emails in this pe-
riod. By analysing the layout with α = 0.99999, it is possible to
see that the node without interactions from the previous layout
appears in the network in the last timestamp. Moreover, one can
notice that the first and the last nodes of the layout had interac-
tions only in the first timestamps. These last two patterns are
visible in all three layouts, but they are more easily perceived in
the layouts with higher α values.

5.2.2. Visual Analysis
Fig. 15 shows TAM layouts for the Enron network consid-

ering different timeslicing approaches. Fig. 15(a-h) shows the
TAM layouts for uniform timeslicing using resolutions 1, 2, 7,
15, 25, 50, 75, and 100, respectively. Fig. 15(i) shows the TAM
layout generated by our method (wsize = 100 and α = 0.9).
Resolutions 1, 2, and 7 (Fig. 15(a-c)) are shown because they
represent the lower (and original), the average and the higher
resolution scales adopted by our method for this network. The
other resolutions (Fig. 15(c-h)) are arbitrary values.

As illustrated in Fig. 14, depending on the timeslicing be-

(a)

(c) (e)(d)(b)

(f) (h) (i)(g)

Fig. 15. TAM layouts for the Enron network considering different resolu-
tion scales. (a) Res. 1. (b) Res. 2. (c) Res. 7. (d) Res. 15. (e) Res. 25. (f)
Res. 50. (g) Res. 75. (h) Res. 100. (i) Our method (wsize = 100 and α = 0.9).
Node ordering defined by Recurrent Neighbors [17] using resolution 1.

ing used, more or less patterns can be identified. The layout
generated by our method allows the identification of at least 5
patterns (Fig. 14(a)): (1) weekdays, in which there are inter-
actions among nodes, and weekends (without interactions); (2)
perception of the growing number of events over time; (3) iden-
tification of highly active groups of nodes; (4) a time interval
with a burst of events near the end of the network; and (5) abrupt
decrease in the number of events followed by the end of the net-
work. The uniform timeslicing using resolution 2 (Fig. 14(b))
also allows the perception of all five patterns. However, re-
call that this resolution represents the average value adopted



12 Preprint Submitted for review / Computers & Graphics (2021)

June, 2001 July, 2001
Nodes

maintaining 
level of
activity 

Nodes
with activity
decreasing
over time

CEO implicated in fraud

Fig. 16. TAM layout generated by our method (wsize = 100 and α = 0.9) showing a portion of the network. Two patterns are visible: (i) a decrease in the
number of events in June and July 2001; and (ii) an abrupt decrease in the number of events followed by the end of the network. The change in the node
colour represents a change in the resolution scale (new timeslice). Node ordering defined by Recurrent Neighbors [17] using resolution 1.

by our method, which supports the claim that it chooses res-
olution scales that are indeed suitable for the network analy-
sis. As expected, BVC redistributed the events along the times-
tamps, and so these temporal patterns (all but pattern 3) are
lost (Fig. 14(c)). By using resolution 7 in a uniform times-
licing (Fig. 14(d)), patterns 1 and 2 are lost. Each timestamp
in this resolution represents 7 days and so there is no separa-
tion of weekdays and weekends or the perception of growing
node activity. One can note that layouts with temporal resolu-
tions above 7 (see Fig. 15(d-h)) are even worse for the Enron
network visual analysis.

The ideal timeslicing depends on the network being analysed.
For the Primary School network, the uniform timeslicing using
resolution 25 allowed the identification of several patterns (see
Fig. 6(b)). On the other hand, resolution 25 is not a good choice
for the Enron network (Fig. 15(d)). In the same way, a uni-
form timeslicing using resolution 2 would not improve Primary
School analysis. Our method is capable of adapting the reso-
lution scale according to the number and distribution of events,
thus enhancing the network visual analysis.

Fig. 16 presents two other patterns observed in the layout
generated by our method when zooming in the time interval
with a burst of events showed in Fig. 14(a). According to Sun et
al. [50], in June 2001 occurred an important company episode
related to the Enron accounting fraud: “Rove divests his stocks
in energy”. In the layout, it is possible to see a decrease in
the number of events (emails) in the majority of the days in
June and July involving the majority of the nodes. Such pat-
tern may be related to this important episode. The layout also
shows the moment in which there is an abrupt decrease in the
number of events followed by the end of the network. Such
decrease is related to another company episode, “Lay [Enron
CEO] implicated in plot to inflate profits and hide losses” [50],
which happened in Feb 4th, 2002. After the decrease of events,
our method changed the resolution scale from 7 to 3, reflect-
ing the new number of events. Temporal patterns such as these
are probably lost when using BVC because of its event redis-
tribution (Fig. 17(b)). Our method (Fig. 17(c)), on the other
hand, provides a distribution similar to those from uniform ap-
proaches (Fig. 17(a,d)), and thus is capable of highlighting such
temporal patterns.
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Fig. 17. Spread of events over time according to different timeslicing ap-
proaches for the Enron network. (a) Original resolution (1,346 times-
tamps). (b) BVC (1,345 timestamps). (c) Our method (921 timestamps,
wsize = 100 and α = 0.9). (d) Res. 25 (193 timestamps). While BVC changes
the event distribution because of its histogram equalisation procedure, our
method provides a distribution similar to those from uniform approaches.
“norm(e)” refers to the normalisation of the number of events to values
between 0 and 1.

6. Limitations

Method. When timeslicing, one should be aware that events
may be lost to improve network comprehension (due to the con-
secutive timestamp grouping), and so relevant information may
be lost in the process. Such characteristic exists in any other
sampling strategy. Our proposal, however, considers the num-
ber of events and maintains their non-stationary distribution in
an attempt to reduce such impairment.

Our method takes into account only event density to define
the temporal resolution scales. As the network topology is
not considered in the process, the density would be the same
independently of the nodes involved in the connections. Al-
though the network structure is not considerably affected by
small changes in the temporal resolution [28, 5], we did not
measure the intensity of changes in the structure caused by the
resolution scales our method can choose. This study would al-
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low us to establish an upper limit for the resolution scales or
lead to a new method that would consider the network topol-
ogy.

Misleading conclusions. Since two timestamps in the layout
may represent completely different time intervals, one should
pay attention in the resolution scale adopted in each of them
when the task depends on this information (e.g., to decide
which node has been active for the longest time in the network).
Changes in the node colour, as used in the experiments, and an
analysis using a line graph that depicts the resolution scale evo-
lution (recall Figs. 4 and 12) attenuate this limitation, but other
visual encodings can be used. In such cases, where the nonuni-
form timeslicing impairs the analysis, our method remains use-
ful as the average resolution scale computed by it represents a
good choice for a uniform timeslicing (as occurred with resolu-
tion 25 in our Primary School analysis).

Layout readability. Although our method improves the layout
by manipulating the network temporal dimension, the node po-
sitioning represents another important aspect that has to be con-
sidered, since the ordering quality may impact layout readabil-
ity. We thus recommend the adoption of a high-quality node
positioning method. Eventually, the joint employment of sam-
pling strategies may be required.

Visualisation techniques. We have demonstrated our method’s
quality using node-link diagram, TAM, and MSV. Although our
method runs online, these last two visual representations draw
the network elements (nodes and/or edges) in an offline man-
ner. This is a characteristic of these layouts and not a limitation
of our method. Although they could be adapted to handle on-
line scenarios by plotting consecutive windows over time, this
adaptation is out of the scope of this paper. As demonstrated,
our method does not rely on particular layouts’ characteristics
(e.g., length/positioning of edges or animated vs timeline lay-
outs) and thus could be applied in different layouts as well. In
animated layouts, however, the visual analysis would probably
be impaired in some cases, since the number of frames devoted
to high-activity periods would reduce, potentially breaking the
user’s mental map.

7. Conclusion

We proposed in this paper an online and nonuniform times-
licing method for network visualisation that highlights temporal
patterns such as bursts of events, highly-active groups of nodes,
and others. It enhances visual analysis of both temporal and
streaming networks and can be used with a variety of visuali-
sation techniques, for example, TAM, node-link diagrams, and
MSV.

Without our method, when handling temporal networks one
should test different uniform timeslices until the “less worst” is
found. Besides the effort of such preliminary tests, analyses of
different networks require different temporal resolutions. For
streaming scenarios, exploratory analysis to support the times-
licing may not be possible because events are arriving online

and in non-stationary distribution. For the same reason, consid-
ering an initial set of events to support the choice of the resolu-
tion scale may be inefficient as well.

Our method considers the number of events and their distri-
bution to adapt the layout. This is possible because the choice
of each new resolution scale uses only events from a sliding
window, with old information being discounted by a forgetting
mechanism. The method has low time and spatial computa-
tional complexity, since there is no need for various scans in
the data and edges can be discarded once they are processed.
In our experiments, we have analysed two real-world networks
with different characteristics and the results show that the reso-
lution scales automatically adopted are indeed suitable for each
network analysis.

As future work, we intend to perform user experiments to
validate our method considering the quality of the produced
layout and the decisions regarding how easy the users perceive
changes in the resolution scale. Besides, the choice of both
window size and fading factor value directly affects the layout.
These are currently user-dependent parameters and we will try
to automate them. We also intend to measure how much infor-
mation is lost when the network temporal resolution is changed
and how this affects the network topology.
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BAN. Dynetvis - an interactive software to visualize structure and epi-
demics on temporal networks. In: 2020 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM).
2020, p. 933–936. doi:10.1109/ASONAM49781.2020.9381304.

[57] Gemmetto, V, Barrat, A, Cattuto, C. Mitigation of infectious disease at
school: targeted class closure vs school closure. BMC infectious diseases
2014;14(1):695. doi:10.1186/PREACCEPT-6851518521414365.
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