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Abstract—Automatic trajectory processing has multiple appli-1

cations, mainly due to the wide availability of the data. Tra-2

jectory data have a significant practical value, making possible3

the modeling of various problems such as surveillance and4

tracking devices, detect anomaly trajectories, identifying illegal5

and adverse activity. In this study, we show a comparative6

analysis of the performance of two descriptors to detect anomaly7

trajectories. We define Wavelet and Fourier transforms as tra-8

jectory descriptors to generate characteristics and subsequently9

detect anomalies. The experiments emphasize performance in10

the description in the coefficient feature space. For that, we used11

unsupervised learning, specifically clustering techniques, to gen-12

erate subsets and identify which are irregular. The implications13

of the study demonstrate that it is possible to use descriptors14

in trajectories for automatic anomaly detection and the use of15

unsupervised learning methods that automatically segment the16

required information. The performance and comparative analysis17

of our study are demonstrated through experiments and a case18

study considering synthetic and real data sets that leave evidence19

of our contribution.20

Index Terms—Trajectory anomaly detection, trajectory shape21

descriptor, feature extraction, trajectory clustering22

I. INTRODUCTION23

Understanding trajectory dynamics is a challenging problem24

due to the wide data and Spatio-temporal information. Trajec-25

tories analysis play an important role in different areas such26

as animal tracking [1], air-streams [2], weather prediction [3],27

traffic flow [4], activity flow [5], sports [6], flight planning [7],28

and many others. In this field, anomaly behavior may indicate29

important objects and events in a wide variety of domains [8].30

However, this analysis is not a trivial problem due to the31

sequential analysis, complexity morphology, and parameter32

calibration of algorithms.33

Anomaly trajectory detection is an important problem be-34

cause it allows identifying trajectories that may indicate illegal35

and adverse activity. For instance, in video surveillance, it36

could indicate personal assault, robbery, and infrastructural37

sabotage. However, it is not a trivial task; the algorithms have38

to face different problems: the process of cleaning the noise39

of the trajectories and the extraction of semantic information40

that involves experimentation and studies transforming raw 41

movements to other kinds of representations [9]. Moreover, 42

the lack of exact metrics to measure the quality of a semantic 43

extractor makes the study of trajectories difficult. 44

On the other hand, the use of unsupervised learning to 45

anomaly detection is already justified and used in the liter- 46

ature [10]. The supervised approaches to anomaly detection 47

are less practical in some contexts, such as video surveillance 48

applications and automatic motion learning, since labeled 49

training data are not usually available or practical to obtain. 50

That is why techniques are required to learn anomaly activity 51

patterns in an unsupervised manner. Training data will often 52

contain anomalies or outliers that are unusual or infrequently 53

occurring. The learning algorithm must adapt to anomalies and 54

must be robust in the presence of noise and occlusion. 55

This work focuses on comparing two descriptors to anomaly 56

trajectory detection taking morphology as the main feature. 57

Moreover, the proposed methodologies present experiments to 58

verify that descriptors improve the trajectory analysis process. 59

These experiments will be validated throughout performance 60

comparisons considering some data sets of the literature. 61

Specifically, we aim to analyze automatic trajectory anomaly 62

detection performance based on unsupervised learning, taking 63

Discrete Fourier Transform and Multilevel Discrete Wavelet 64

Decomposition as principal descriptors. Moreover, we applied 65

our methodology over a real video surveillance data set to 66

identify rare videos based on anomaly trajectories. In sum- 67

mary, our contributions are: 68

• A methodology to identify anomaly trajectory detection 69

based on Fourier and Wavelet transforms as descriptors. 70

• Verify the unsupervised learning method as the affinity 71

propagation in the trajectory anomaly detection based on 72

similarity analysis. 73

• A set of comparative studies revealing interesting patterns 74

about trajectories considering different data sets and 75

descriptors. 76

• A case study based on real data that demonstrate the 77

usefulness of our methodology to anomaly trajectory 78



detection on video surveillance.79

II. RELATED WORKS80

The literature about trajectory analysis is extensive. To81

better contextualize our approach, we divide this section into82

some parts (also considering the datasets used for each analy-83

sis): introduction to trajectory analysis, trajectory processing,84

and anomaly detection.85

Kong et al. [11] classified trajectory data as explicit and86

implicit based on their continuity and structure. Explicit tra-87

jectory data provide time and location information, besides88

a well-structured and Spatio-temporal solid continuity. Tra-89

jectories generated by GPS data are the most representative90

ones in this category. On the other hand, implicit trajectory91

data has weak spatiotemporal continuity, sub-categorizing this92

class in signal-based, sensor-based, and network-based data.93

This study introduces a summary of applications and services94

that use trajectories, presents an application-based trajectory95

classification, and also mentions some recommendation system96

services that use trajectories in their studies. In order to97

contextualize, according to this study, our data are within the98

subcategory of sensor-based data since our case study is related99

to the monitoring of people.100

Depending on the entity that originates the trajectories,101

they will be subjected to a finite set of classes or trajectory102

types, from regular movements to highly erratic movements.103

Trajectory modeling is the first and challenging step in the104

treatment of trajectories. Into the literature, there are different105

ways of treating trajectories; for instance, the algorithm called106

TRACLUS [12] processes the trajectories using segments,107

creating with this information a summary of them. On the108

other hand, some studies restrict trajectories to a road network;109

it refers to the movement of vehicles following a transport110

network. In this category, NETSCAN [12], NNCluster [13],111

and NEAT [14] show studies restricting the trajectories to112

a road network. In addition to being restricted to a road113

network, NETSCAN and TRACLUS process trajectories from114

the segmentation approach without considering characteristics115

or patterns that are repeated in different parts of the trajec-116

tory (high-level features). Instead, [10], [15] and [16] model117

trajectories trying to capture information present in the whole118

way (individual identity).119

In this work, to detect the anomaly in feature space, we120

use the Distance-Based Methods [17]. The trajectories with a121

long distance from most trajectories are regarded as abnormal,122

using clustering to create groups of similar trajectories.123

Piciarelli et al. [18] created an algorithm to generate syn-124

thetic trajectory data sets. This algorithm generates a thousand125

subsets that are automatically generated with sixteen points126

each. These data sets are used in more academic papers since127

this study is one of the first works that address detecting128

anomalous trajectories and share their data sets. Years later,129

Laxhammar et al. [8] presented new results considering the130

algorithms and the datasets generated by Piciarelli. This study131

emphasized the sequential analysis of incomplete trajectories,132

which the author termed real-time learning based on an 133

incremental update of the training set. 134

Ergezer et al. [19] presented a trajectory descriptor with a 135

covariance matrix to detect anomalous trajectories using Near- 136

est Neighbors (NN) and Space Representation (SR), besides 137

the use of spectral grouping for the perception of activity. 138

This study also uses the synthetic data set of Piciarelli [18] 139

as part of their results and also performs experiments with 140

real data of the University of California San Diego (UCSD) 141

and the MIT Parking Lot [20] for the detection of anomalies 142

in videos. In the same vein, Sillito et al. [21] proposed a 143

new framework to detect abnormal trajectories considering 144

the behavior of passersby in terms of trajectory movement. 145

This framework builds a One-Class classifier that is based 146

on probabilities using the Gaussian distribution. Moreover, 147

they conduct experiments using labeled and unlabeled data 148

sets using two databases such as CAVIAR INRIA [22] and 149

Capark [23]. 150

This section presents some studies in trajectory anomaly 151

detection, which use various methods to extract features 152

from trajectories. However, the use of Wavelet and Fourier 153

transforms as a descriptor focusing on trajectory shape or 154

morphology does not present deep studies. 155

III. BACKGROUND 156

This section presents essential concepts related to our ap- 157

proach to familiarize the reader with our research topic. 158

A. Point, trajectory and sub-trajectory 159

For our study a point p is a tuple (x, y, t), where x and y 160

are the position (latitude and longitude respectively) and t is 161

the time-lapse when the position is collected: 162

pk = (xk, yk, tk), k ∈ N (1)

and a list of points ordered in time forms a trajectory Ti: 163

Ti = (tidi, {pk}k=1:K) (2)

where tidi is the identifier with t1 < t2 < t3 < ... < tK in a 164

sequence of points {p1, p2, ..., pK} and {i,K} ∈ N. 165

By the other hand for our study a sub-trajectory is defined as: 166

T ′s = {pk}k=1:K (3)

where T ′s is a set of points pk = (ck, tk), tk is the time instant 167

in which the component ck is collected and ck ∈ wx∨ck ∈ wy 168

defined on Equations 10 and 11 respectively. 169

B. The Discrete Fourier Transform (DFT) 170

The Fourier transform is a mathematical function that de- 171

composes a waveform, which varies through time, into the 172

frequencies and amplitudes that signal up. The output of the 173

Fourier transform has real and imaginary parts for positive 174

and negative frequencies. The absolute value of their outputs 175

represents the original function frequencies. Thus, the Fourier 176

transforms allowing viewing any function as a sum of simple 177

sinusoids. 178



The DFT is a type of discrete transformation used in Fourier179

analysis. The DFT can be defined as the sampling of a function180

at a certain frequency, and it requires as input a finite discrete181

sequence. For instance, these sequences can be generated from182

the sample of a single section of a signal.183

Let f(t) be the signal which is the source of the data184

and let be N instants separated by sample times denoted by185

f [0], f [1], f [2], ..., f [N − 1]. The DFT of f(t) can be defined186

as:187

F [k] =

N−1∑
n=0

f [n]W kn, (4)

for each k = 0, 1, . . . , N −1. Where W = e−j(2π/N) and j =188 √
−1 which is an imaginary number. F [k] are the coefficients189

to each basis function in the linear summation.190

C. The Multilevel Discrete Wavelet Decomposition (MDWD)191

The Wavelet transform is a mathematical function useful192

in digital signal processing and image compression. In signal193

processing, Wavelets make it possible to recover weak signals194

from noisy ones, which is helpful, especially in the processing195

of X-ray and magnetic-resonance images in medical applica-196

tions. The Wavelet and Fourier transform represents a signal197

through as a linear combination of their basic functions, and198

both of them decompose signals as a superposition of simple199

units from which the original signals could be reconstructed.200

The Wavelet Transform decomposes signals into wavelets, and201

their base functions are compact or finite in time. This feature202

allows the Wavelet Transform to obtain time information about203

a signal in addition to frequency information. The Wavelet204

transform has a window size that varies frequency scale.205

This technique is advantageous for the analysis of signals206

containing both discontinuities and soft components. Short207

high-frequency base functions are needed for discontinuities,208

while at the same time, long low-frequency ones are needed209

for the soft components. The Wavelets are a class of functions210

used to localize a given function in both space and scaling.211

To analyze non-stationary signals, we need to decompose212

signals into localized units in both time and frequency do-213

mains. For this purpose, we use the MDWD. According to214

[24], the MDWD is a wavelet-based discrete signal method,215

which can extract multilevel time-frequency features from a216

signal by decomposing it as low and high-frequency sub-217

signals level by level.218

For the next explanation we use bold symbols such as219

x, a or X to denote vectors and not-bold a, x or l to220

scalars. We denote the input for N samples for a signal as221

x = {x0, x1, . . . , xN−1}, and the low and high sub-signals222

generated in the i-th level as xl(i) and xh(i). In the (i+ 1)-th223

level, MDWD uses a low pass filter l = {l1, . . . , lk, . . . , lK}224

and a high pass filter h = {h1, . . . , hk, . . . , hK}, K � N , to225

convolute low frequency sub-signals of the upper level as226

aln(i + 1) =

K∑
k=1

xln+k−1(i) · lk, (5)

ahn(i + 1) =

K∑
k=1

xln+k−1(i) · hk, (6)

where xln(i) is the n-th element of the low frequency signal 227

in the i-th level, and xl(0) is set as the input signal. The low 228

and high frequency sub-signal xl(i) and xh(i) in the level i 229

are generated from the 1/2 down-sampling of the intermediate 230

variable signals defined as (7) and (8). 231

al(i) =
{
al1(i), al2(i), . . .

}
(7)

ah(i) =
{
ah1 (i), ah2 (i), . . .

}
(8)

The sub-signals set: 232

X (i) =
{
xh(1),xh(2), . . . ,xh(i),xl(i)

}
(9)

It is called the i-th level decomposed of x, and it has different 233

time and frequency resolutions. The sub-signals with different 234

frequencies in X are defined as the MDWD, and it maintains 235

the same order information with the original signal x, and the 236

frequency from xh(1) to xl(i) is from high to low. 237

Fig. 1 shows a recreation of MDWD of x with three levels, 238

each of the pointed lines repair each level, the first convolution 239

with the initial signal is considering as level 0. Each of the 240

rectangles represent the low or high pass filter giving as a result 241

al(i) and ah(i), while xl(i) represent the input signal to the 242

next level i and xh(i) is added to the solution. The components 243

rounded by lines dotted in red make up the decomposition of 244

the original signal in several levels which for this study will 245

be used as features. Finally as a result we obtain X (3), which 246

in this case it is composed by four sub-signals. 247

IV. ANOMALY TRAJECTORY DETECTION 248

In this section, we describe details about the procedures 249

involved in our pipeline. The most important task of our 250

proposed methodology is the description of trajectories; we 251

focus on describe trajectories based on their morphologies 252

for grouping similar ones. Fig. 2 illustrates each of the steps 253

Fig. 1: Representative illustration of MDWD to x with three
levels obtaining as results X (3). This image is based on [24].



Fig. 2: Pipeline overview of the proposed methodology based
on three modules: Data, Modeling, and anomaly detection.

applied in our approach. We divide our methodology into three254

modules: Pre-processing, Modeling, and Detection.255

The pre-processing starts from obtaining trajectories, where256

sometimes it is necessary to use trajectory transformation algo-257

rithms or data cleaning methods. In the real world, trajectories258

are noisy, and the data are not standardized. The trajectory259

modeling consists of finding an adequate representation, this260

representation highlight characteristic that helps to discrimi-261

nate or classify our data for a specific purpose. The feature262

extraction is present in this step. Finally, in the third module,263

the anomaly detection, properly this step consists of detecting264

an isolated point in a hyperplane since to detect anomalies, in265

our study, we will use the distance-based methods approach.266

The trajectories with a long distance from most of them are267

regarded as abnormal and clustering to create similar groups.268

A. Trajectory data269

The module Data is about the obtaining and the used trajec-270

tories in our study. For our approach, a trajectory represents271

an object in motion, it having as extremes the beginning and272

at the end. In this work, we used four datasets:273

• The Synthetic dataset created in [18], it is about 260, 000274

trajectories generated by an algorithm. These trajectories275

were divided into 1, 000 groups, and each group contains276

260 instances with coordinates (x, y), which 250 belong 277

to 5 clusters, and the last 10 are anomalous trajectories. 278

These trajectories are 16 points long, with no time 279

information. 280

• The dataset created by Laxhammar et al. [8] using the 281

Piciarelli’s [18] algorithm. This new dataset is about 282

200, 000 thousand trajectories, with 100 groups from 10 283

different clusters; each group contains 2, 000 trajectories. 284

This dataset allows better tests in efficiency and effec- 285

tiveness. 286

• The CROSS [5] dataset contains 9, 700 trajectories simu- 287

lating four-way traffic intersections with various through 288

and turns patterns, including even a u-turn. The dataset 289

consists of 9, 500 activity paths belong to 19 clusters and 290

200 anomaly paths. These paths have different lengths 291

with no time information. 292

• A dataset with 1, 000 trajectories with coordinates (x, y). 293

It contains 970 normal and 30 anomaly paths. These paths 294

have different lengths with no time information. These 295

trajectories were extracted from videos that belong to a 296

Laboratory. The videos are used to analyze anomalous 297

events in simple situations [25], the content is real without 298

forcing any abnormal situation. 299

All of these datasets are normalized and cleaned; therefore, no 300

pre-processing task was made over them. In this section, it is 301

important to mention that our approach supports trajectories of 302

different sizes; it is corroborated with the experimentation of 303

the Laboratory and CROSS datasets that contain trajectories 304

with different lengths. 305

B. Trajectory modeling 306

Next, we will proceed to describe the modeling of trajecto- 307

ries in detail. From once the data sets have been obtained to 308

the generation of feature vectors. 309

1) Trajectory normalization: This process was applied for 310

each trajectory. For this purpose, we use the feature scaling 311

method. 312

Let the following spaces be: 313

wx = {xi ∈ pi | ∀pi ∈ Tj} , (10)

wy = {yi ∈ pi | ∀pi ∈ Tj} , (11)

where pi is a point and Tj a trajectory. For all variables xi 314

and yi of Tj , the feature scaling formulas are applied: 315

x′i =
xi −min(wx)

max(wx)−min(wx)
, (12)

y′i =
yi −min(wy)

max(wy)−min(wy)
, (13)

where min and max return the minimum and the maxi- 316

mum values of a space respectively. After computing each 317

component wx and wy with (12) and (13), each element 318

has a new assigned value. We can assign the value zero for 319

the minimum and one for the maximum, and the rest of 320



the intermediate values are scales between those thresholds.321

For instance, for visualization purposes, we multiplied as the322

maximum values the dimensions of 720 and 1280 for each323

component respectively (x and y), obtaining; as a result, the324

Fig. 3.b (Fig. 3.a shows the original trajectory).325

2) Trajectory decomposition: In the proposed study, the326

representation of trajectories are generated by splitting them327

into 1-D sub-trajectories for x and y spaces, represented as328

X = xi, Y = yi, i = 1, . . . , n (n is the number of points of329

a trajectory). X and Y represent the horizontal and vertical330

movements. Fig. 4 shows an example of two sub-trajectories331

generated by our modeling. Another interpretation that fits332

into this process is that these sub-trajectories can behave like333

some time series representing the variation of each spatial334

component. Thus, the signals give a parameterized behavior335

compared to trajectory data, and it aids the description in336

shape.337

3) Feature space representation: Once the trajectory de-338

composition is finished, we can apply feature extraction meth-339

ods to describe each sub-trajectory. The descriptor inputs340

are the two sub-trajectories. We consider two techniques to341

achieve sub-trajectories description, including discrete Fourier342

transform and MDWD. The derivation of our feature space343

representation of sub-trajectories using the three proposed344

methods is specified as follows:345

a) Discrete Fourier transform: The Feature space rep-346

resentation of a trajectory using DFT is similar. The N-points347

DFT of X (see Section III), defined as a sequence Xf of N348

complex numbers (f = 0, ..., N − 1), is given by:349

Xf = DFT (X) (14)

Yf = DFT (Y ) (15)

Xf and Yf are complex numbers with the exception of X0,350

Y0 which are real. As a rule, the DFT sequence is truncated351

after m terms for Xf and k for Yf . Formally, let be ai and352

âi be the real and imaginary part of Xf , and bi and b̂i be the353

real and imaginary part of Yf . Since we define working with354

real instead imaginary numbers, we convert Xf and Yf into355

real numbers using (16) and (17) respectively.356

(a) (b)

Fig. 3: The normalization of trajectories improves our features.
(a) The initial trajectory corresponds to the path generated in a
video segment. (b) Each component of the trajectory has been
normalized by video dimensions in each component.

Fig. 4: Trajectory decomposition. Our modeling breaks the
trajectories down into two 1-D sets of points.

ri =
√
ai2 + â2i , i = 0, ...,m− 1 (16)

357

r̄j =

√
bi

2 + b̂2i , j = 0, ..., k − 1 (17)

with ri and r̄j numbers, we note that some of them appear 358

twice, choosing only one as in (18) and (19). 359

Rx = {r0, ..., ri, ..., rm−1}6= (18)
360

Ry = {r̄0, ..., r̄j , ..., r̄k−1}6= (19)

where Rx and Ry are set formed by unique elements. We 361

perform discretization or binning with those two sets of 362

variables, transforming the variable length of a set into a 363

constant defined length set. It was using histograms bq and 364

b′q . They meet the following conditions: 365

|Rx| =
l∑

q=1

bq (20)

|Ry| =
l∑

q=1

b′q (21)

Where bq and b′q are functions to count the numbers of 366

observations that fall into each of the disjoint categories (bins). 367

l is the number of bins, |Rx| and |Ry| are the numbers of 368

observation of Rx and Ry respectively. Finally, the trajectory 369

can be represented in the feature space by FDFT defined as: 370

(22). 371

FDFT = [

l∑
q=1

bq,

l∑
q=1

b′q] (22)

b) Multilevel Discrete Wavelet Decomposition: For our 372

description process with MDWD, the Haar family is used. 373

It presents different levels of frequencies depending on the 374

number of different forms present in the trajectory. Applying 375

MDWD in X and Y , we can obtain (23) and (24) respectively. 376

[cAm, cDm, cDm−1, . . . , cD2, cD1] = MDWD(X) (23)

[cAk, cDk, cDk−1, . . . , cD2, cD1] = MDWD(Y ) (24)



The output is a list of coefficients, where m and k denote377

the maximum useful level of decomposition. Thus, the first378

element cAm of the result is the approximation coefficients379

array, and the following elements cDm, . . . , cD1 are detailed380

coefficients arrays.381

We define the feature vector Fx as the concatenation of382

different levels of coefficients obtaining with MDWD for X383

given by (25). A similar expression can be defined for Y as384

(26).385

Fx = [cAm, cDm, cDm−1, . . . , cD2, cD1] (25)

Fy = [cAk, cDk, cDk−1, . . . , cD2, cD1] (26)

with Fx and Fy , we perform discretization using histograms386

bq and b′q , they meet the following conditions:387

|Fx| =
l∑

q=1

bq (27)

|Fy| =
l∑

q=1

b′q (28)

In a similar way as was applied with DFT. Finally, trajectory388

can be represented in the feature space by F defined as (29).389

F = [m, k,

l∑
q=1

bq,

l∑
q=1

b′q] (29)

C. Anomaly detection390

Once the feature vectors were obtained, we perform the391

anomaly detection. We use the distance-based methods [17],392

the trajectories with a long distance from most trajectories are393

regarded as abnormal. For this purpose, we use clustering. We394

segment and separate trajectory information in the clustering395

process to detect anomalies (which are located at extremes396

far from majority groups). As a clustering method, we use397

affinity propagation (AP); this method suits our experiments.398

Moreover, the AP allows the separation of different trajectories399

since this clustering method generates more groups than400

other unsupervised methods. Finally, to recuperate anomaly401

trajectories from clusters, we defined a threshold. It is defined402

as the maximum number of elements of an anomalous cluster.403

V. RESULTS AND DISCUSSION404

In this section, we describe the results of our experiments.405

Three synthetic datasets perform the quantitative results.406

Moreover, we present a case study with a real dataset (see407

Section VI).408

a) Experimental Setup: The hyper-parameters of our409

experiments are described as follow. For AP the preference410

parameter is set to the median of the input similarities, and the411

damping factor is set to 0.5, 0.625, and 0.7. In some cases, the412

maximum number of iteration should be set to one thousand.413

In the case of histograms, the number of bins is set to ten,414

and for obtaining the average accuracy, we choose the best415

threshold in each trajectory subset experimentation.416

Fig. 5: Comparative evaluation performance of DFT and
MDWD descriptors using CROSS dataset.

b) Evaluation: In order to evaluate the relative perfor- 417

mance of our proposed representation in exhaustive datasets, 418

we perform experiments using synthetic datasets generated 419

in [18] and [8]. Due to the nature of these datasets, we 420

use average accuracy to evaluate performance. Instead, with 421

the CROSS dataset, we use accuracy since it is composed 422

of one set of trajectories. The results are present on Table 423

I. We propose to evaluate the performance in this dataset 424

with Receiver Operating Characteristic (ROC) curve, each 425

point of the ROC curve is obtained with a different threshold 426

value, denoting values for True Positive Rate (TPR) and 427

False Positive Rate (FPR) in each detection. This information 428

provides a visual perception of the best threshold using FPR 429

and TPR. We can see our result in Fig. 5. According to it, 430

MDWD descriptors achieve the best results than DFT in this 431

dataset. 432

c) Discussion: First, we describe the results achieved 433

with synthetic datasets, and then we explain the results ob- 434

tained with the CROSS dataset. 435

For the first two datasets, it is clear that DFT has the 436

highest detection performance. On the third dataset, results 437

for DFT were slightly worse compared to MDWD. Although 438

the accuracy obtained for the CROSS dataset decrease in the 439

two ones, it presents a great difficulty in processing since the 440

trajectories have variable lengths. 441

From Table I, the best score obtained is with Laxhammar 442

dataset and we consider that it is competitive with related 443

works [18] and [19]. On the other hand, in the CROSS dataset, 444

we compare our results with experiments performed by Morris 445

et al. [5], which use the technique of [15], which identified 446

84% abnormalities with a 10% of false-positive rate. In our 447

TABLE I: Quantitative results on three synthetic datasets.

Datasets
Method Piciarelli Laxhammar CROSS
MDWD 0.9519 0.9780 0.8884

DFT 0.9525 0.9848 0.8825



case using TPR, we obtain 64% with a 24% false positive448

rate. Obtaining promising results, since our representations449

take information related to morphology and the CROSS dataset450

collects information of shape in their anomaly definition, we451

consider that this dataset collects similar information to the452

proposed objectives.453

VI. CASE STUDY454

To assess the performance of our approach, we conduct a455

case study to identify rare videos based on anomaly detection456

of people’s trajectories. For that, we used SSIG-dataset filmed457

in a smart sense laboratory door. This dataset contains people458

in different situations: pointing in and pointing out the labo-459

ratory, closing and opening the door, stopping and walking460

outside the laboratory. The criteria for defining “normal”461

videos are: entering and leaving the laboratory by opening462

and closing the door; a short amount of time spent in front463

of the camera (less than 10 seconds); people going through464

the corridor outside the laboratory; and people leaving and465

entering the side laboratory. On the other hand, the criteria to466

define rare behavior are: making several movements to come467

and go to the laboratory, stand in front of the camera for a468

long period, and using the key-box located near the door for469

an extended period.470

The dataset consists of 5, 025 videos which last from two471

seconds to four minutes and twenty-three seconds recorded472

during two years. For each video, based on post-estimation, we473

selected a fiducial point of a person, and with tracking method,474

we connected the fiducial point of each frame generating475

a trajectory. Aiming to explore a considerable number of476

samples, we randomly selected 1, 000 trajectories. The idea477

behind this data set is to segment a subset that contains478

abnormal behaviors of a person in terms of their displacement479

in the video (abnormal trajectories). For that, we manually480

generate a ground truth considering the conditions for rare481

and normal behavior.482

A. Feature extraction and clustering483

The first step to accomplish this case study is feature484

extraction. In this work, we considered Fourier and Wavelet485

transforms as trajectory feature extractors. Moreover, for this486

Fig. 6: The most similar trajectory for each descriptor.

Fig. 7: Example of trajectories of a cluster. The boxed trajec-
tories are wrong clustered.

case study, we considered an additional simple descriptor 487

based on interpolation, in order to have a simple description 488

method to compare. Once the coefficients are found for each 489

trajectory, they are used as a feature vector in the clusterization 490

process. The easiest way to achieve the feature extractor per- 491

formance is to compare an element with its nearest neighbor. 492

Fig. 6 shows the result of a finding of the nearest neighbor 493

trajectory using Kernel Density Estimation (KDE). The first 494

column illustrates a random example, while the second column 495

shows the most similar trajectory considering the vector of 496

each descriptor. Notice that Fourier and Wavelet Transform 497

extract better similar neighboring trajectories, demonstrating 498

that they pull characteristics for grouping better than the 499

interpolation method. Thus, these are used as descriptors of 500

the morphology of our trajectories. 501

In the next step, using Affinity Propagation, we clustered 502

our trajectories based on their morphology. To measure the 503

performance of our clustering method, we used the counting 504

method. In each cluster, this metric counts how many elements 505

are wrong clustered. The average error is computed based on 506

the number of elements of the cluster and the number of wrong 507

clustered elements. For instance, Fig. 7 shows the trajectories 508

of a cluster; the boxed trajectories are wrong clustered. In this 509

example, the cluster has 22 elements, with six wrong clustered 510

trajectories, having 27.27% error percentage (ei). The total 511

error percentage is calculated by the average of the percentage 512

of each cluster (E =
∑n

ei/n). 513



TABLE II: Error percentages for each descriptor.

Descriptor Affinity Propagation (E%)
Interpolation 15.67

Fourier 9.20
Wavelet 6.77

TABLE III: Results of gathering anomaly trajectories by our
choice.

Threshold Accuracy Precision Recall Specificity
1 0.99 1.00 0.70 1.00
2 0.99 0.97 0.93 0.99
3 0.989 0.731 1.00 0.98

In order to explore each feature extractor method, we514

conduct an empirical analysis examining the error percentage515

of each method. Table II shows the result of the clustering error516

percentage of each method. Notice that the Wavelet descriptor517

has the lowest error percentage, following by Fourier.518

Based on the lowest error percentage of Table II, in this519

case study, we use Wavelet transform as the main descriptor.520

In order to validate our results, it is necessary to set a threshold521

which define as the maximum number of elements that a522

cluster can have to be considered abnormal. Table III shows the523

threshold influence in each quality metric. These metrics were524

computed considering the ground truth. We can see that 2 is525

the best threshold with 0.97 average for each metric. Note that526

Accuracy values are more significant than 0.989, most of them527

with 0.99, showing the good performance of our approach.528

We present some visual results regarding the qualitative529

evaluation of our choice (wavelet, Affinity propagation, and530

threshold 2). Fig. 9 shows anomaly trajectories detected by531

our approach contained in the rare videos of the ground532

truth. Fig. 10 shows three clusters generated by our choice.533

We can see that each cluster groups similar trajectories by534

their morphology. Finally, Fig. 8 shows two thumbnails af-535

ter our processing on surveillance videos. The trajectory is536

represented on the video, each point represent the position537

in each frame while the white point represents the point538

taken for the generation of the trajectory. This point allows539

the observation of the direction that the trajectory takes on540

each detected point. It could be noticed that the abnormal541

trajectory presents pronounced deformations (see Fig. 8) while542

the normal trajectory has smooth chances (see Fig. 10).543

VII. CONCLUSIÓN544

This paper presents a comparative analysis of trajectory545

descriptors using coefficient feature space representation to de-546

tect anomaly trajectories. We have also introduced the MDWD547

as a shape-feature extractor on trajectories, and it yields satis-548

factory results compared to other descriptors, obtaining greater549

performance in the detection of anomaly trajectories, due550

to the better trajectory description provided by this method.551

Our study was based on an unsupervised learning method552

using similarity analysis—the validation process took into553

account various synthetic and real-life datasets. Moreover, the554

usefulness of our approach has been demonstrated throughout555

Fig. 8: Thumbnails of videos with their respective trajectories.
Rare videos with the abnormal trajectories (pronounced defor-
mation). The white point represents the fiducial point taken
as a reference, while the colored points represent the fiducial
point in each video frame.

a case study to detect anomaly trajectories in real video 556

surveillance data set. 557

We observe that the used dataset influences the AP algo- 558

rithm. Whether the number of classes of trajectories increases, 559

the classification precision of the algorithm decrease. There is 560

a possible improvement in the unsupervised learning process 561

using the Adaptive AP method [26] to automatically select the 562

preference parameter and find the optimal clustering solution, 563

and also in the use of k-Nearest Neighbor in order not to define 564

a threshold manually and localize the anomalies automatically 565

on feature space. 566
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