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ABSTRACT
Temporal network visualization is a powerful tool that assists users
in understanding network structure and dynamics. One of the most
popular visual representations in this context is the Massive Se-
quence View (MSV), a timeline-based layout that allows the iden-
tification of patterns, anomalies, and other structures from global
to local scales. MSV may suffer from visual clutter when applied
to real-world networks due to the large number of nodes, edges,
and/or timestamps. To enhance the analysis, several clutter re-
duction methods have been proposed in the literature. No study,
however, has evaluated different strategies that combine methods
with respect to their effectiveness in reducing visual clutter while
highlighting meaningful patterns. In this paper, we combine node
ordering, edge sampling, and timeslicing methods to analyze how
these combinations impact layout readability and pattern identifi-
cation. We consider recent applications of MSV in the context of
infection dynamics to study the effect of different combinations in
the visualization layout. Through two case studies with real-world
networks, we demonstrate the superiority of combining at least two
high-quality methods in relation to the use of a single method. We
also show that edge sampling should be used as a complementary
strategy, always associated with a high-performance node ordering.

CCS CONCEPTS
• Information systems → Data analytics; • Human-centered
computing → Visualization;
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1 INTRODUCTION
A temporal network is a modelling framework used to represent
interactions over time involving instances from a domain [17].
This type of network contains three basic components (sometimes
referred as dimensions [20]): node (which represents a domain’s
instance), edge (which represents an interaction between two in-
stances), and time (when an interaction occurred – represented
through edge’s timestamp). Examples of temporal networks in-
clude email communications, face-to-face interactions, neuronal
activity, and others [9, 11].

The visual exploration of temporal networks allows one to un-
derstand the network structure and evolution, thus improving the
identification of patterns and anomalies and optimizing decision
making [15, 21]. There are several visual representations (also called
layouts) through which users can analyze a temporal network,
for example animated node-link diagrams and matrix-based lay-
outs [14],Massive Sequence View (MSV) [29], Temporal Activity Map
(TAM) [16], and others. The large number of nodes, edges, and/or
timestamps in real-world networks, however, may lead to a high
level of visual clutter caused by the excessive overlap of nodes and
edges [13], impairing layout readability and pattern identification.

The MSV layout is a timeline-based visualization commonly
adopted for tasks involving the distribution of edges over time [14,
29]. There are several methods designed to reduce visual clutter in
MSV representations, from node ordering (e.g., [15, 16, 29]) to edge
sampling (e.g., [22, 31]) and timeslicing (also known as temporal
resolution changing — e.g., [16, 20]). It is expected that an efficient
edge sampling method maintains the most relevant edges in the
MSV layout. However, such edges may result in overlap depending
on the adopted node ordering. In the same way, edge lengths are
reduced by efficient node ordering strategies, but the amount of vi-
sual information may continue too large depending on the temporal
resolution and number of edges. The combination of such methods
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affects the level of visual clutter, pattern identification, and deci-
sion making. No study, however, has evaluated different strategies
that combine methods concerning their effectiveness in reducing
visual clutter on MSV layouts while highlighting meaningful visual
patterns.

In this paper, we combine methods that employ different ap-
proaches to reduce visual clutter on MSV layouts and analyze how
these combinations impact layout readability. More specifically, we
evaluate the joint employment of a node ordering method (based
on time of appearance, node degree, or CNO [15]), an edge sam-
pling method (without sampling, random sampling, or SEVis [22]),
and a specific temporal resolution scale (the original network res-
olution or Adaptive Resolution [20]). As each of these methods
leverages a particular network dimension (node, edge, or time), our
study is motivated by the following questions: “Is the visual analysis
enhanced when using layouts produced by the combination of two
methods (high-performance methods for two network dimensions and
a naive approach for the other)?” and “Is the visual analysis enhanced
when using layouts produced by the combination of three methods
(high-performance methods for the three network dimensions)?”.

The paper is organized as follows. Section 2 describes fundamen-
tal concepts and related work. Section 3 presents our methodology.
Section 4 presents case studies considering two real-world net-
works with distinct characteristics. Section 5 discusses the results
and limitations. Section 6 presents the conclusion and future work.

2 BACKGROUND AND RELATEDWORK
To compare different strategies that combine methods for clutter
reduction (hereafter referred as “combinations”), we rely on the
recent application of MSV for the analysis of infection spread dy-
namics [12, 13]. With this in mind, this section first describes MSV
in detail. Then, we introduce the Susceptible-Infected (SI) infection
dynamics model used to simulate infection propagation in temporal
networks and show how to adapt MSV for this context. Finally, we
present existing methods for reducing clutter in MSV visualizations.

2.1 Massive Sequence View (MSV)
Several layouts have been proposed over the years to represent
complex (non-temporal) networks, such as node-link diagrams and
matrix-based layouts [8]. For temporal networks, one of the most
recommended layouts is Massive Sequence View (MSV) [14]. In this
layout, nodes are mapped into rows, timestamps are mapped into
columns, and edges are represented as vertical straight lines linking
two rows at a given column (see Figures 1(a,b)). Given the large
number of nodes, edges, and/or timestamps in real-world networks,
MSV may suffer from visual clutter, i.e., an excessive overlap of
visual elements that impairs the visualization [29].

2.2 Susceptible-Infected (SI) infection dynamics
The temporal network characteristics, for example periods of idle-
ness and bursts of interactions, make such networks useful to study
epidemics [24]. As a matter of fact, several real-world temporal
social networks have been proposed to analyze infection spread
dynamics in different environments and situations (e.g., schools [7]
and sexual encounters [26]).
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Figure 1: Visualizing temporal networks and infection spread
dynamics: (a) List of edges; (b) Massive Sequence View (MSV);
(c) Transmission path (TP) layout. Blue node: Susceptible.
Red node: Infected. Patient zero: node B at timestamp 1.

We consider a fundamental infection dynamics model named
susceptible-infected (SI) [1]. In this model, all nodes start susceptible,
except for the patient zero that is a node chosen to be initially
infected. As the network evolves, each interaction involving an
infected node and a susceptible one has a probability 𝑝 of infecting
the susceptible node. The SI model is appropriate to study the
worst-case scenarios of infection dynamics because once infected,
the node never recovers [1, 24].

Given that temporal network visualization is a useful tool for
analyzing infection spread dynamics, MSV can be adapted to high-
light the transmission path (TP) over time [13, 23]. In this paper,
we refer to this adapted MSV as TP layout. This representation
shows only those edges through which the infection propagates,
i.e., edges representing contacts between infected and susceptible
nodes that resulted in new infections. Figure 1(c) illustrates a TP
layout where the SI infection spread takes place on the network
with 𝑝 = 1. Susceptible nodes are represented with a different color
and transparency. This layout facilitates identifying the infected
nodes and the timings of new infections.

2.3 Methods for visual clutter reduction
We can categorize methods designed to reduce visual clutter in
network visualization according to the network dimension they
manipulate (i.e., node, edge, or time) [20]. Regarding the node dimen-
sion, there are methods to sample relevant nodes [4], to summarize
the network (for example via super-nodes [28]), and to define proper
node ordering in the layout [15, 16, 29]. Node ordering methods
are useful in the context of MSV layouts because they reduce edge
length, thus reducing overlaps and improving the perception of
temporal patterns from global to local perspectives.

Besides naive strategies such as Appearance and Degree-based
node ordering — which sort nodes according to the chronolog-
ical order of connections and according to the ascending order
of accumulated (in/out) degrees, respectively —, more elaborate
strategies have been proposed. The Optimized MSV [29] is a hi-
erarchical strategy that reduces clutter by minimizing both edge
block overlap and standard deviation of the edges lengths. Another
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strategy is Recurrent Neighbors (RN) [16], a recursive method that
approximates nodes that are more often connected together. Not
least, Community-based node ordering (CNO) [15] is a visual scal-
able and multi-level method that leverages existing node ordering
and detection of network communities, i.e., groups of nodes that
interact more often among themselves than between groups [5].
CNO is flexible and can employ different community detection
algorithms, including the Louvain, a modularity-based method
commonly adopted in the literature [2, 19].

Methods that belong to the edge dimension usually focus on
removing less relevant edges, thus reducing visual information
through edge sampling strategies. The Edge Overlapping Degree
(EOD) [31], for example, is an edge sampling method designed for
MSV layouts that considers overlaps between neighboring edges
and their length as indicators of visual clutter. The Streaming Edge
Sampling for Network Visualization (SEVis) [22] is an edge sampling
method also suitable for streaming networks1 and layout-agnostic.
For each window of timestamps with size 𝑤𝑠𝑖𝑧𝑒 over time, SEVis
(i) incrementally computes the 𝑘 most relevant nodes so far in
the network using Space-Saving [18]; (ii) decides if a community
detection using the window data must be performed and runs the
detection if necessary; (iii) accepts the intra-community edges that
have at least one relevant incident node.

Finally, regarding the time dimension, onemay focus the analysis
on relevant observation periods or change the network temporal
resolution by grouping consecutive timestamps [16, 20, 27, 30]. This
later strategy is particularly useful when dealing with temporally
sparse networks and can be made through uniform timeslicing [20],
i.e., by considering a global and static temporal resolution scale
in which all timestamps of the network represent the same length
of time (e.g., 1-hour or 1-day interval), or through non-uniform
timeslicing, i.e., by having timestamps with different lengths. As
an example, Wang et al. [30] proposed a non-uniform timeslicing
method that changes the timestamp attribute of the network edges
such that a balanced visual complexity (similar number of edges
over time) is achieved. Likewise, Ponciano et al. [20] proposed a non-
uniform timeslicing method (hereafter named Adaptive Resolution
(AR)) that considers the local edge density to define themost suitable
resolution scale for each window of timestamps with size𝑤𝑠𝑖𝑧𝑒 over
time. AR is also suitable for streaming networks and relies on the
forgetting mechanism Fading Sum [6] to discount old edges in the
network. The greater the value of the fading factor (𝛼) parameter,
the more importance is given to older edges.

Some of the studies mentioned above combine two methods
when generating MSV visualizations. The layouts used by the AR
creators to analyze the method’s performance, for example, relied
on the Recurrent Neighbors node ordering [20]. CNO was similarly
adopted when generating the MSV layouts to evaluate SEVis [22]
and Optimized MSV was used in the evaluation of EOD [31]. To the
best of our knowledge, however, no study has compared different
strategies combining methods from two or three dimensions to
analyze their effectiveness in terms of visual clutter reduction and
pattern identification.

1Streaming network is a type of network whose size is potentially unbounded and in
which edges are continuously arriving in non-stationary distribution [20, 22].

3 METHODOLOGY
We have restricted our analysis to strategies combining a node or-
dering method (Appearance, Degree, or CNO), a timeslicing method
(original temporal resolution or AR), and an edge sampling method
(SEVis, random, or None (original network)). Each combination
comprises one, and only one, method from each category. Except if
stated otherwise, the order in which the methods of a combination
are executed is defined by (i) timeslicing, (ii) node ordering, and
then (iii) edge sampling. For a given temporal resolution, the tuple
“(𝑥 ,𝑦)” will be used to refer to the application of the node ordering
𝑥 followed by the edge sampling 𝑦.

After applying a combination on a given temporal network, we
obtain a MSV layout that allows us to quantify the produced level of
visual clutter and to identify eventual visible patterns. We consider
two measures to compare the different combinations. The first mea-
sure is the number of intersections in theMSV layout, which refers to
the sum of howmany parts of each edge overlap other edges [15]. A
part of an edge is defined as the region between two adjacent nodes
in the layout. The smaller the number of intersections, the less
visual clutter. The second is the Kolmogorov-Smirnov measure [22],
which gives the distance (ks-d) between two empirical cumulative
distribution functions. Its value varies from 0 (identical distribu-
tions) to 1 (totally different distributions). In our case, we use this
measure to compare the edge distribution before and after sampling.
The smaller the ks-d, the better the edge sampling.

Besides the quantitative evaluation, we also consider a quali-
tative visual analysis of each produced layout. We first analyze
how different combinations impact visual clutter reduction and
pattern identification using MSV. After that, we perform a visual
exploration of pre-simulated infection spread dynamics through
TP layouts generated by different combinations. We first take a
temporal network and simulate epidemics using the SI model in
this original network (original temporal resolution and without
edge sampling). Thereafter, the combinations are executed consid-
ering all network data. Finally, we analyze how each combination
affected the analysis of the transmission path and pattern identifi-
cation. Examples of patterns in this context include the perception
of who infected whom and when the infection happened, groups
of infected nodes, and epidemic outbreak.

4 CASE STUDIES
This section presents case studies considering two real-world tem-
poral networkswith distinct characteristics: theMuseum network [10]
(a relatively small data set) and the Sexual network [25, 26] (a large
data set). All layouts were produced with DyNetVis [12].

4.1 Methods configuration
To be consistent with previous research, we chose parameter values
inline to previous studies [15, 20, 22].

• AR: fading factor equals to 0.99 (𝛼 = 0.99) and window size of
50 (𝑤𝑠𝑖𝑧𝑒 = 50) or 100 timestamps (𝑤𝑠𝑖𝑧𝑒 = 100), depending
on the analysis.

• CNO: Louvain [2] as network community detection method
and Recurrent Neighbors [16] as community and node order-
ing strategy.
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Figure 2: Number of intersections per combination for theMuseum network. (a) Original temporal resolution. (b) AR (𝑤𝑠𝑖𝑧𝑒 = 50),
which resulted in 𝑎𝑣𝑔𝑟 = 2.44 ± 2.29, where 𝑎𝑣𝑔𝑟 refers to the average temporal resolution adopted. (c) AR (𝑤𝑠𝑖𝑧𝑒 = 100), which
resulted in 𝑎𝑣𝑔𝑟 = 2.86 ± 1.61. Each color refers to an edge sampling method (None means original network). Random sampling
executed 10 times for each node ordering (black bars refer to standard deviations).

• SEVis: by default, window size of 100 timestamps (𝑤𝑠𝑖𝑧𝑒 =

100) and 𝑘 = 0.25|𝑉 | most relevant nodes considered by
Space-Saving [18], where |𝑉 | is the number of nodes in the
network. Changes in these parameter values will be explicitly
mentioned. The ratio to decide whether a new community
detection must be executed, also using Louvain, is 𝑡𝑟 = 0.8.

• Random edge sampling: accepts an edge with probability
𝑝𝑎 = 0.5.

4.2 Museum network
The Museum network [10] is composed of data related to face-to-
face proximity between people visiting the Science Gallery in Dublin,
Ireland. The original network contains 72 nodes and 6,980 edges dis-
tributed in 1,312 timestamps. Each timestamp refers to a 20-second
interval in the original temporal resolution (Res. 1). To analyze this
network, we rely on combinations involving: original resolution
and AR with 𝑤𝑠𝑖𝑧𝑒 = 50 and 𝑤𝑠𝑖𝑧𝑒 = 100 (temporal dimension);
Appearance, Degree, and CNO node ordering (node dimension);
None, Random, and SEVis edge sampling (edge dimension).

Figure 2 shows the number of intersections for each evaluated
combination. The layouts adopting the original temporal resolution
(Figure 2(a)) have a smaller number of intersections when compared
with those from AR using𝑤𝑠𝑖𝑧𝑒 = 50 (Figure 2(b)) and𝑤𝑠𝑖𝑧𝑒 = 100
(Figure 2(c)). AR groups edges from consecutive timestamps, so the
overall number of timestamps is reduced and, as a consequence,
the number of intersections increases. Although the layouts from
the original resolution have fewer intersections, they have more
timestamps and therefore are horizontally large. This impairs the
identification of global patterns, requires more screen space and
breaks the user’s mental map [20].

For any timeslicing method/configuration in Figure 2, the combi-
nation Appearance for node ordering and None for edge sampling –
i.e., combination (Appearance, None) –, generates the layouts with
the highest levels of visual clutter (highest number of intersections),
followed by (Degree, None) and (CNO, None) – which reaffirms

CNO high quality. When applying edge sampling strategies, the
number of intersections is greatly reduced, as expected (see orange
and gray bars in Figure 2). For the original temporal resolution
(Figure 2(a)) and AR with 𝑤𝑠𝑖𝑧𝑒 = 50 (Figure 2(b)), regardless of
the node ordering, SEVis always outperforms random sampling,
producing layouts that contain fewer intersections and better rep-
resent the original network (smaller ks-d). When observing layouts
from AR with𝑤𝑠𝑖𝑧𝑒 = 100 (Figure 2(c)), however, SEVis produces
more intersections than the random sampling for two node ordering
methods (Appearance and Degree), i.e., SEVis maintained edges that
are long when employing these ordering methods, thus increasing
the number of intersections. When combined with CNO, SEVis
outperforms the other combinations regardless of the temporal
resolution being used: CNO reduces the number of intersections by
repositioning nodes, which implies in less visual clutter and easier
pattern identification, and SEVis improves the layout even more by
discarding less relevant edges while preserving the characteristics
of the network before sampling.

Figure 3 presents four MSV layouts generated by different combi-
nations using AR with𝑤𝑠𝑖𝑧𝑒 = 100 (Figure 2(c)). This configuration
was chosen because the application of SEVis along with AR with
𝑤𝑠𝑖𝑧𝑒 = 100 resulted in more intersections than SEVis plus AR with
𝑤𝑠𝑖𝑧𝑒 = 50 (gray bars in Figures 2(b,c)). Our goal is to evaluate
SEVis under this circumstance, i.e., with such a high intersection
level. The layout from (Appearance, None), shown in Figure 3(a),
is dense and has too many intersections. When we apply SEVis
(combination (Appearance, SEVis), Figure 3(b)), several edges of
the network are discarded (1,749 out of 4,600), but the maintained
edges remain too long, and so the layout readability is almost the
same (although a few groups of relevant nodes are now highlighted
– see red brackets). By repositioning nodes with CNO in the net-
work without sampling (combination (CNO, None), Figure 3(c)),
the analysis is greatly improved: groups of nodes are highlighted
(red brackets) and a time interval that seemed to have a high level
of activity with (Appearance, None) is, in fact, an interval with
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(a) (Appearance, None) (b) (Appearance, SEVis)

(c) (CNO, None) (d) (CNO, SEVis)

Figure 3: MSV layouts generated by different combinations for a portion of the Museum network using AR with𝑤𝑠𝑖𝑧𝑒 = 100. (a)
Combination (Appearance, None). (b) (Appearance, SEVis). (c) (CNO, None). (d) (CNO, SEVis). Time interval: from 𝑡 = 100 to
𝑡 = 769 in the original resolution. Red bars and red brackets indicate existing patterns.

low activity (see the red bar in Figure 3(c) and the respective time
interval in Figure 3(a)). Combination (CNO, SEVis), shown in Fig-
ure 3(d), produces a cleaner layout and allows quick identification
of relevant groups of nodes (see red brackets).

The impact of different combinations in the TP layout is shown in
Figure 4. For this evaluation, we first simulated a SI infection spread
with 𝑝 = 0.1. The patient zero is the node with the highest degree
in the aggregated network (i.e., when considering all timestamps
at once) in the first timestamp it appears. By comparing combi-
nation (Appearance, None) from the original temporal resolution
(Figure 4(a)) with the combination (Appearance, None) from AR
with𝑤𝑠𝑖𝑧𝑒 = 100 (Figure 4(b)), we see that AR maintains the charac-
teristics of the edge distribution from the original resolution while
reducing the number of timestamps (1,312 vs 569 for representing
the entire network). This leads, for instance, to faster identification
of the epidemic outbreak and other high activity periods (see black
bars in Figure 4(b)).

By adopting AR with 𝑤𝑠𝑖𝑧𝑒 = 100 and moving from (Appear-
ance, None) to (CNO, None), as illustrated in Figures 4(b,c), the
identification of groups of nodes is now possible (see arrows in
Figure 4(c)). These groups, that are obtained by CNO, correspond
to network communities. Since a community may represent, e.g.,
household members or people in workplaces, one may be inter-
ested in analyzing intra-community infection spread [3]. When
applying SEVis (combination (CNO, SEVis), Figure 4(d)), only the
most relevant nodes and edges are maintained. In this case, a CNO
community may continue the same (see arrow in Figure 4(d)), com-
pletely disappear (see ‘X’ symbol), or change (see brackets). If we
move from (Appearance, None) to (Appearance, SEVis) instead of

to (CNO, None), as shown in Figures 4(b,e), the layout becomes
cleaner but the identification of groups is infeasible. Only when
running CNO, such identification is possible (Figure 4(f)). Note that
the node positioning is different when comparing Figures 4(d,f).
After sampling, the set of edges considered by CNO is a subset of
the original one; different network communities are detected and,
therefore, a different node ordering is produced.

Overall, the combination of AR along with CNO (without SEVis)
improved pattern identification in this network (Figure 4(c)). The ap-
plication of SEVis without CNO, on the other hand, did not present
the same effectiveness, even when combined with AR (Figure 4(e)).
In summary, there are pairwise combinations that enhance the vi-
sual analysis, but not all of them. Not least, the combination of all
three methods (AR, CNO, and SEVis) improved layout readability
regardless of the order in which the node ordering and the edge
sampling methods were employed (Figures 4(d,f)).

4.3 Sexual network
The Sexual network [25, 26] is composed of sexual encounters be-
tween sex-workers and their clients. The data was collected through
posts in a public online forum. Each post evaluates the encounter,
so each one comprehends an edge that connects the involved indi-
viduals (nodes) in the network. There are 12,157 nodes and 34,060
edges distributed in 1,000 timestamps.

Figure 5 shows different combinations (different TP layouts) for
the Sexual network. For this evaluation, we applied the SI model
in the original network with infection probability 𝑝 = 0.25. The
patient zero is an arbitrary node in the first timestamp it appears.
All analyses with SEVis adopt 𝑘 = 0.005|𝑉 |, i.e., SEVis considers
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(a) Res.1 (Appearance, None)

(b) AR (Appearance, None) (c) AR (CNO, None) (d) AR (CNO, SEVis)

(e) AR (Appearance, SEVis) (f) AR (CNO after SEVis)

Figure 4: Different combinations in the TP layout using theMuseum network. (a) Original resolution, combination (Appearance,
None). (b-f) AR with 𝑤𝑠𝑖𝑧𝑒 = 100. (b) (Appearance, None). (c) (CNO, None). (d) (CNO, SEVis). (e) (Appearance, SEVis). (f) CNO
applied in the layout from (e), i.e., CNO after SEVis. First evaluation: sequence of combinations following sub-figures (a) → (b)
→ (c)→ (d). Second evaluation: sub-figures (a)→ (b)→ (e)→ (f). Time interval: from 𝑡 = 220 to 𝑡 = 870 in the original resolution.
Black icons (bars, arrows, brackets, and ’X’) highlight existing patterns.

all edges incident to the top-60 more relevant (frequent) nodes. In
the layouts, the intensity of the edge color is related to the number
of overlapping edges and intersections (the darker the color, the
higher the number of overlaps and intersections). By comparing
(Appearance, None) with (CNO, None) in the original resolution
(Figures 5(a,b)), one may see that CNO greatly reduces the number
of edge overlaps (lighter colors). The identification of patterns in
the layout, however, remains difficult. Even when applying (CNO,
SEVis), global pattern identification is not optimized (Figure 5(c)).

Because of the network density, AR with 𝑤𝑠𝑖𝑧𝑒 = 50 and 𝛼 =

0.99 redistributed all edges in 96 timestamps. Considering that the
first 𝑤𝑠𝑖𝑧𝑒 timestamps used in the AR computation correspond
to the method’s cold start [20], 950 timestamps of the original
resolution were converted in only 46 timestamps in the adaptive
resolution. The layout produced by the combination (Appearance,
None) considering this resolution is shown in Figure 5(d). Note that
approximately the first half of the layout (left-middle) contains too
few edges (cold start), while the second half (middle-right) contains
all the other edges in a high edge overlap level (dark colors). Somany
overlaps involving long edges lead to a number of intersections
so elevated that the visual analysis becomes unfeasible without
complementary strategies that promote further edge reduction or
removal (e.g., CNO along with SEVis).

For the adopted adaptive resolution scale, neither (Appearance,
SEVis) nor (CNO, None) improves the overall layout readability
(Figures 5(e,f)). Only when combining all three methods (AR plus

(CNO, SEVis)), particular groups of nodes and edges are revealed.
Given the new number of timestamps (96), running SEVis with
𝑤𝑠𝑖𝑧𝑒 = 100 means that the entire network is considered as a single
window of timestamps. In this case, since both CNO and SEVis
used Louvain for community detection, all CNO inter-community
edges are discarded by SEVis. In addition, SEVis also discards those
CNO intra-community edges that involve non-relevant nodes. In
a more detailed perspective, the analysis is analogous to the one
from Figures 4(c,d).

The groups of nodes and edges that were maintained in the TP
layout after employing AR plus (CNO, SEVis), Figure 5(g), may
be further analyzed using interactive tools, such as zoom and pan
(Figure 5(h)). These tools would allow to explore, e.g., nodes inside
a particular group or perform cross-comparison between groups.
Groups of nodes considered as non-relevant by SEVis are discarded
and therefore not visible (see ‘X’ symbols in Figure 5(h)). When
applying SEVis using smaller windows, there is no match between
the communities detected by CNO and SEVis, so edges maintained
by SEVis may connect nodes positioned far from each other, thus
increasing the number of intersections and polluting the layout.
Figure 5(i) shows the TP layout produced by AR, CNO and SEVis
using𝑤𝑠𝑖𝑧𝑒 = 40. Although small groups may be lost due to edge
overlap (in comparison with Figure 5(g)), it is now possible to
identify relevant connections between the visible groups, which
facilitates contact tracing and cross-comparisons. Note that the
mentioned interactive tools would benefit this analysis as well.
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Figure 5: Impact of different combinations in an epidemics visual analysis using the Sexual network. (a-c) Original temporal
resolution (1,000 timestamps). (a) (Appearance, None). (b) (CNO, None). (c) (CNO, SEVis𝑤𝑠𝑖𝑧𝑒 = 100). (d-g) AR with𝑤𝑠𝑖𝑧𝑒 = 50 (96
timestamps), which resulted in 𝑎𝑣𝑔𝑟 = 24.52 ± 5.55. (d) (Appearance, None). (e) (Appearance, SEVis𝑤𝑠𝑖𝑧𝑒 = 100). (f) (CNO, None).
(g) (CNO, SEVis𝑤𝑠𝑖𝑧𝑒 = 100). (h) Zooming in particular groups from (g). (i) (CNO, SEVis𝑤𝑠𝑖𝑧𝑒 = 40).

5 DISCUSSION AND LIMITATIONS
We have considered two real-world networks with distinct charac-
teristics. The Museum network is a relatively small data set with
72 nodes and 6,980 edges (5.32 edges per timestamp on average)
that contains more timestamps than nodes. The Sexual network is
a large data set with 12,157 nodes and 34,060 edges (34.06 edges per
timestamp on average) that contains more nodes than timestamps.

Testing different combinations and parameters for the evaluated
methods would be too demanding. For the same reason, other tasks,
combinations involving other methods, and other application se-
quences (e.g., executing SEVis first and then running AR) were not
tested. Even though we cannot generalize our findings, we are now
capable of responding to the questions presented at the beginning
of this paper for the performed evaluation:

“Is the visual analysis enhanced when using layouts produced by
the combination of two methods (high-performance methods for two
network dimensions and a naive approach for the other)?”
Answer: It depends on the network characteristics and the combina-
tion/parameter values being considered. For the Museum network,
the combination of AR and CNO (without SEVis) greatly improved
layout readability (Figure 4(c)). The combination of AR and SEVis
(without CNO and therefore using Appearance), on the other hand,
did not present the same effectiveness (Figure 4(e)). In essence,
an edge sampling method should be considered as a complemen-
tary strategy, always associated with the employment of a high
performance node ordering.

“Is the visual analysis enhanced when using layouts produced by
the combination of three methods (high-performance methods for the
three network dimensions)?”

Answer: Yes. To a greater or lesser extent, this happened for both
networks. When analyzing the Sexual network, only the combina-
tion of all three methods (AR, CNO, and SEVis) highlighted existing
patterns (Figures 5(g-i)). The evaluated pairwise combinations were
not effective (Figures 5(c,e,f)).

Lastly, contrary to CNO, which requires the aggregated network,
SEVis and AR use only the more recent data through sliding win-
dows over time. In combinations involving both CNO and SEVis,
the “gap” that exists between the static CNO node ordering and
SEVis dynamic execution may result in discrepancies in the net-
work community detection, leading to long edges in the layout
(recall Figure 5(i)). Running both SEVis and CNO in such a dynamic
manner would naturally attenuate this situation as CNO would
change the node ordering at each window [22].

6 CONCLUSION
Various methods have been proposed to reduce clutter in temporal
network visualization. In particular, the Massive Sequence View
(MSV) layout has attracted the attention of researchers who want to
enhance the network visual analysis. In recent years, MSV has also
been adapted and used for the analysis of dynamic processes that
take place on the network, e.g., the simulation of infection spreads.

This paper compared different combinations of clutter reduction
methods developed for, or applied to, MSV. We have considered in
our study node ordering, edge sampling, and timeslicing methods,
thus covering all three network dimensions (namely node, edge,
and time). Through two case studies where we simulated infection
spread dynamics in real-world networks with distinct sizes and
characteristics, we showed how the combination of different meth-
ods affected the layout and, consequently, pattern identification
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and decision making. We were able to assess the superiority of
combinations involving two or more high-performance methods
compared with the adoption of a single method and showed that
edge sampling should be used as a complementary strategy, always
associated with a high-performance node ordering. As future work,
we intend to evaluate the methods under different parameters and
more methods and layouts (e.g., animated node-link diagrams).
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