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Abstract— Spatial and temporal interactions are central and fundamental in many activities in our world. A common problem faced
when visualizing this type of data is how to provide an overview that helps users navigate efficiently. Traditional approaches use
coordinated views or 3D metaphors like the Space-time cube to tackle this problem. However, they suffer from overplotting and
often lack spatial context, hindering data exploration. More recent techniques, such as MotionRugs, propose compact temporal
summaries based on 1D projection. While powerful, these techniques do not support the situation for which the spatial extent of
the objects and their intersections is relevant, such as the analysis of surveillance videos or tracking weather storms. In this paper,
we propose MoReVis, a visual overview of spatiotemporal data that considers the objects’ spatial extent and strives to show spatial
interactions among these objects by displaying spatial intersections. Like previous techniques, our method involves projecting the
spatial coordinates to 1D to produce compact summaries. However, our solution’s core consists of performing a layout optimization
step that sets the size and positions of the visual marks on the summary to resemble the actual values on the original space. We also
provide multiple interactive mechanisms to make interpreting the results more straightforward for the user. We perform an extensive
experimental evaluation and usage scenarios. Moreover, we evaluated the usefulness of MoReVis in a study with 9 participants. The
results point out the effectiveness and suitability of our method in representing different datasets compared to traditional techniques.

Index Terms—Spatiotemporal visualization, spatial interactions, spatial abstraction.

1 INTRODUCTION

The wide availability of data acquisition devices has produced large
trajectory datasets. These datasets compile movement data in a span of
domains. For this reason, the construction of analysis and visualization
techniques, strategies, and tools to support the exploration of this data
type has been a well-studied problem. Moving entities are often rep-
resented as points (dimensionless objects) when studying trajectories.
However, in applications such as climate science and video surveillance,
the moving entities have extents that are important for analyzing these
datasets. The spatial extent also leads to interaction between objects
when there is a spatial intersection. This relationship can contain valu-
able information about the objects. We call these types of trajectories
representing the movement of objects with a spatial extent as Moving
Regions.

An essential problem in trajectory data visualization is the construc-
tion of visual overviews to summarize the movement of a collection of
objects in a static plot. The most straightforward solutions are aggrega-
tion, small multiples, or animation-based visualizations. Aggregation
often breaks up trajectories into pieces to form collections that cause
the loss of overall movement. On the other hand, while strategies based
on small multiples can give some temporal context, they are limited to
a small number of possible timesteps to be shown. In addition, anima-
tions containing many moving objects pose a high cognitive load to the
users [1, 26]. Another possible solution is to use a three-dimensional
representation, such as the space-time cube metaphor, which uses
the two dimensions to represent space and the perpendicular third
dimension to represent time. Nevertheless, this suffers from the usual
flaws due to the use of 3D, such as occlusion and perspective distortion.

Recently proposed techniques such as MotionRugs [10] (and its
variations) attempt to overcome these problems by creating an overview
using a 2D metaphor in which the time is represented on one axis and
space on another. However, they do not consider the extension of
the objects, generating additional problems such as the preservation of
intersections in the original space. Storyline visualizations were initially
used to display the narrative of movies in a 2D plot, focusing on the
representation of meetings between actors along the movie duration.
Most recent works have applied it to more general datasets and different
notions of interaction. While powerful, these other summaries did not
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consider the combined representation of trajectories, spatial extent,
and interactions and are unsuitable for depicting overviews of moving
regions datasets.

In this paper, we propose MoReVis (Moving Regions Visualization).
This visualization technique addresses the abovementioned limitations
and provides an overview of moving regions. MoReVis uses a 1D
representation of space similar to MotionRugs to build an overview as
a static 2D plot. We formulate the layout strategy as an optimization
problem to properly represent the moving regions’ extents and their
spatial interactions, in this case, intersections. The final layout ensures
that the object’s areas and interactions on the visual summary are as
close as possible to the areas in the original 2D space. The final plot
illustrates each object as a curved ribbon, which uses discrete time
in the horizontal direction and space on the vertical axis. We also
provide rich interactive features to help users understand the underlying
data. We implement our method in a visual interface and present
two usage scenarios using datasets from different domains. These
examples show how our approach can provide an overview allowing
users to grasp patterns and interactions within the moving region dataset
quickly. Finally, we evaluate MoReVis’ effectiveness using numerical
experiments and a preliminary user study. Users were able to answer
questions about the dataset under evaluation adequately. In addition, the
feedback on our proposal’s usefulness and effectiveness was positive
overall.

In summary, our main contributions are:

• A novel technique for creating a visual summary of moving re-
gions, preserving areas, spatial distances, and intersections between
regions as much as possible.
• Visual and interactive tools for better understanding the space trans-

formation utilized and the representation of intersections.
• A quantitative and qualitative evaluation of MoReVis, including a

comparison with other spatiotemporal visualization methods and a
user study.

Finally, all the data and code used in this paper are publicly available
at http://visualdslab.com/papers/MoReVis/.

2 RELATED WORK

Our work draws on three streams of prior work trajectory visualization
and application domains of moving regions. Trajectory visualization
is a well-studied problem and a complete overview of visual motion
analysis; we recommend the survey by Andrienko et al. [2]. The follow-
ing two subsections consider trajectories represented as moving points.
We discuss classical static summaries of trajectory visualizations and
storyline visualization. The last subsection depicts some applications
where objects with spatial extent are essential.
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Trajectory Visualization: A common problem in visualizing trajec-
tory data is providing an overview of a dataset. The most commonly
used method for representing trajectories is a static spatial view (often
a geographical map), where polylines are used to show the trajectories
followed by the moving entities present in the data [50, 54]. However,
this approach presents a poor representation of the time dimension and
can suffer from overplotting. Therefore, variations have been proposed
to overcome these problems using aggregation or pattern extraction
algorithms that segment the data into consistent motion patterns [21,55].
On the other hand, the space-time cube [30] uses a different approach
to solve these issues by using a 3D-based visual metaphor to represent
time as one of the dimensions in 3D space. This method has been
widely used in previous work [3, 6, 14]. However, as it uses a 3D envi-
ronment, it can present diverse problems: cognitive overload, distortion
of distances, and occlusion [2, 22, 56].
More recent methods use static temporal visualizations to avoid the
problems present in the space-time cube. These consist of a dense
plot with time on the horizontal axis and a discrete set of vertical
positions representing the spatial component of the trajectories. As a
result, these methods can display the entire period of data and do not
suffer from overplotting and occlusions. These techniques use spatial
transformations that preserve the order of positions without considering
distances. MotionRugs [10] is the first representative of this category,
proposed to provide an overview of collective motion data. As the
objective is to identify the general trend in the motion of a population,
it does not represent the individual trajectories and only shows relative
distances. A further variation of this technique, called SpatialRugs,
was presented by Buchmüller et al. [11], which uses colors to represent
absolute spatial positions. Subsequently, Franke et al. [24] adapted
this idea to present a temporal heatmap to visualize the propagation of
natural phenomena. JamVis [45] utilized the 2D representation to show
urban events formed by groups of spatiotemporal points. A vital aspect
of these visualizations is how to represent 2D spatial coordinates in
one dimension. There are different alternatives to accomplish this task:
dimensionality reduction techniques [5], spatial indexing methods [25,
38], or even specially designed projection techniques [57] to improve
temporal stability in the results. Unlike our work, these techniques
focus on collective movements. Thus, they lack a direct representation
of individual objects, which is of utmost importance in our case. In
addition, and more importantly, they were not designed to represent
moving regions (i.e., objects with a spatial extent).
Storyline Visualizations: This group of techniques communicates
the evolution of relationships between different objects over time. In
general, these relations are the interaction of two objects at the same
spatial position. Commonly referred to as Storyline visualizations, they
were often used to represent movie plots. However, lately, they have
been used to describe relationships between more generic temporal
objects [43]. In this category of visualizations, entities are represented
by curves with a horizontal temporal scale. The vertical proximity
between the curves indicates a relationship. This group of methods
has developed by improving the layout of the curves (reducing line
crossings and wiggles) [37, 47, 53] or by designing tools that allow the
user to control the visualization [48]. The closest work related to our
proposal in this category was proposed by Arendt and Pirrung [4], who
explicitly incorporated spatial information to create the 1D represen-
tation of space. Their user study found that explicitly using spatial
information improved performance on overview tasks compared to
methods that implicitly represent space through object interactions.
Unlike our proposal, all previous works focus on maintaining the local
spatial ordering of objects without preserving the distances — our work
intents to resemble the original distances and intersections between
objects as much as possible.
Moving Regions Applications: We now discuss some domains where
spatial distances, object areas, and interactions, primarily due to spatial
intersections, are vital to interpreting the data. The first application is
video surveillance systems used in traffic management and monitoring
public places, which are essential in intelligent cities [35]. In this type
of video, it is common to perform object detection [29] automated.
However, human interaction still plays an essential role in their analy-

sis, using visualizations as support [44]. In this context, there are also
methods using the space-time cube [40], exhibiting the same disadvan-
tages described above. On the other hand, Lee and Wittenburg [34]
use an approach similar to MotionRugs [10] but with this type of data.
Their method uses the vertical axis to represent time and the horizontal
axis to map the horizontal axis of the video frames. A limitation in
their work is that the projection from 2D to 1D is effortless, creating
overlapping plots between objects when there is no spatial interaction.
For example, in videos of cars on a highway seen from the front, it is
expected that the cars are horizontally aligned, generating many errors.
Fonseca and Paiva [23] use time bars with interactivity tools to indicate
the intervals where the meeting between observed people and other
events occurs to enable fast video analysis.

Another recurrent application is trajectories with uncertainty and
movement prediction [9,19]. In particular, hurricane trajectories are one
theme where the study is necessary for preparation for future events [15].
This type of data presents a trajectory formed by recording the positions
of the hurricane at different points in time. In addition, these records
may include other measurements, such as pressure or wind speed. The
use of visualization tools is customary in these data. For example,
Li et al. [36] used spatial mining techniques to decompose hurricane
tracks and identify critical features. Wang et al. [54] used a map view
with trajectories linked to a parallel coordinate plot, a theme river chart,
and scatter plots to represent the temporal aspect of other measured
attributes. With thunderstorm data, Diehl et al. [17] proposed a tool that
used the TITAN algorithm [18] to obtain regions of the presence of the
storms for each timestep and presented a graph abstraction to display
the splits and merges along time. This modeling of thunderstorms as
regions can also be applied to hurricanes. Depending on wind speed
and pressure, a hurricane can affect surfaces of different sizes; therefore,
it is possible to consider the presence of a hurricane as a region.

These applications use the same spatiotemporal visualization tech-
niques presented above with some adaptations depending on the domain.
Therefore, they have the same limitations, and there is room for im-
provements in the representation of moving regions. In the next section,
we will discuss in detail the shortcomings of some of these techniques.

3 BACKGROUND AND MOTIVATION

This section presents an example using a synthetic dataset to introduce
our method goals and compare them with related techniques. This data
set consists of four circular objects moving through time in orbits of
different radii, as shown in Fig. 1(A). The trajectories of the objects
have different behaviors: the green object moves within a small radius;
the orange and blue ones move closely, overlapping in the second half
of the observed period; finally, the pink object moves in the opposite
direction. In addition, the areas of the objects also have different
behaviors: the green object has a constant radius; the pink one has a
decreasing radius; the other two have an increasing radius as a linear
function of time, leading to an almost complete overlapping of the
circles at the last timestep. This dataset simulates applications such as
object tracking in videos, with a bounding box in each frame for each
moving object in the scene. This region (bounding box) can change
position and shape between different timesteps.

A challenge in this context is providing a visual overview that sum-
marizes the spatiotemporal features of the movement in a given dataset.
Such an overview needs to support the identification (both in space and
time) of i) trajectories of individual objects, ii) area changes (which can
indicate moving closer to/farther from the camera), and iii) intersections
between objects (which can indicate encounters or occlusion between
objects). These tasks were inspired by applications such as analyz-
ing object tracking in videos [27, 40] and how the StoryLines [37, 47]
visualization summarizes the similarities/encounters in a given dataset.

We considered using five previously proposed techniques to provide
a visual summary of our synthetic data set (see the results in Fig. 1).
In each of the results, we discuss five limitations: L1) need for naviga-
tional interactions, L2) lack of representation of individual trajectories,
L3) lack of representation of the area, L4) lack of spatial overlap (inter-
sections) representation, and L5) need to have all objects observed at
all timesteps in the time window under consideration. We consider that



E     Visual Analysis with 1D ordering

MotionLinesD      

Space-Time CubeA      

MotionRugsB      

Stable Principal Components SummaryC      

WL1

WL3

WL4

SL2

SL4

SL5

SL4

SL5

SL2

SL4

WL5

SL4

WL3

SL2

Lim.   Description
L1    Need for navigational interactions
L2    Lack of representation of individual trajectories
L3    Lack of representation of area
L4     Lack of representation of intersections
L5     Need to have all objects observed at all timesteps

Degree Description
W     Weak
S   Strong

Fig. 1. Results of visualizing a synthetic dataset with different spatiotem-
poral visualization techniques and identified limitations. We summarize
each technique’s limitations using the coding scheme in the table above.

techniques can suffer from these limitations in a weak (W) or strong
(S) way.

Space-time cube [30]: This technique uses a 3D metaphor in which
the horizontal plane represents the spatial positions and the vertical axis
the temporal dimension. We can use the original spatial coordinates to
describe the objects’ area and intersections directly. Fig. 1(A) illustrates
three views of the same spatiotemporal cube. The first one only shows
the spatial information of the objects since it is a view from the top
of the cube. The 3D view has some drawbacks, such as perspective
distortion and occlusion, which occur when projecting the cube on
a 2D screen [6]. The distortion can hinder the perception of objects’
areas (WL3); for example, in Fig. 1(A), only the first point of view
presents the areas proportional to the actual values. In each point of
view, there are two types of object overlaps: real intersections and
visual intersections caused by projecting objects of different depths [7]
(WL4). The user would need to verify which intersections are correct
from other points of view. The 3D-based navigation could be more
demanding to control [22, 46] (WL1), and for that reason, it does not
present a fast overview of the data.

MotionRugs [10]: This method is a dense representation where each
column represents a timestep, and each cell is a different object. Note
that two cells in the same row do not necessarily represent the same
object. Since this technique was developed for point data, we use the
centroid of each region as its position to construct the visual summary
in Fig. 1(B). The objects are positioned vertically in each column
according to a spatial ordering, in this case, obtained using a Hilbert
Curve. Unlike the space-time cube, the time dimension is represented
linearly, and space can be interpreted as the dependent variable. We

A1
A2

A3MoReVis

Fig. 2. Result of using MoReVis in the synthetic dataset presented in
Fig. 1. The technique provides a visual overview suitable for moving
regions in which object areas (A1) and spatial interactions (A2),(A3) are
taken into account.

incorporate this representation of time in MoReVis. The colors in
each cell can be based on a feature of the data, such as velocity or
area. In our example, the colors represent the 2D spatial position of
the objects following the 2D color map on the right. In this way, it is
possible to identify the position of objects in space, not just their relative
position, by referring to the 2D color map. In addition, this coloring
also helps to estimate the distances between objects at each timestep.
A more significant color change indicates a more considerable distance.
However, this representation has some limitations. For instance, it is
impossible to understand the movement of individual objects (SL2)
since this technique independently uses the spatial ordering strategy at
each timestep. Thus, the track of each object at different timesteps is
lost. Furthermore, although it is possible to use colors or glyphs with
sizes proportional to the area within the cells, it needs to be clarified
how to adapt these metaphors to represent the spatial intersections
of the different objects (SL4). Lastly, this technique needs the same
objects to be observed in all timesteps (SL5).

Stable Principal Components Summary [57]: This method uses the
same visual encoding as MotionRugs; however, it adopts a modified
PCA projection called Stable Principal Components [57]. This adapta-
tion applies PCA to each timestep; then, it interpolates the results to
generate continuous changes in the calculated principal components.
This space transformation method can better represent 1D object trajec-
tories and give a better view of space, as shown in Fig. 1(C). However,
it suffers from the same limitations as MotionRugs, i.e., it is impossi-
ble to identify individual trajectories, there is no representation of the
spatial intersections, and the objects must be observed in all timesteps
(SL2, SL4, SL5).

MotionLines [57]: This method was presented with Stable Principal
Components. The idea is to use the distance between the objects in
the spatial representation (i.e., the 1D projection on the y-axis) instead
of positioning the objects in each column in their relative order (see
Fig. 1(D)). Compared to the previous method, it is possible to identify
the movement of individual objects, a representation that we also use in
MoReVis. Nevertheless, MotionLines does not consider the representa-
tion of areas and intersections, which are essential in some applications,
such as surveillance videos. A trivial modification to represent the area
would be to change the width of the curves proportionally to the area of
the respective objects. However, as discussed in Sec.6, this change can
result in many missing and spurious intersections (SL4). Furthermore,
the spatial transformation used does not consider the case where the
number of objects is not constant over time (WL5). The space of each
timestep is transformed separately, and when there is one object or
none, the 1D space degenerates.

Visual Analysis with 1D ordering [24]: This method creates a
heatmap to summarize the dataset. As in previous work, each col-
umn represents a timestep. Each row corresponds to a grid cell of the
divided space grid — i.e., the positions are discretized into a regular
grid. Next, the mapping of the cells to the vertical position is obtained
by dimensionality reduction, in this case, with the Hilbert curve. For
each cell, the color represents some measure of the objects’ density in
the corresponding grid cells. In Fig. 1(E), we use the sum of areas of
the objects in that cell. Although we can infer global motion trends in
this example, this summary uses an aggregation strategy. Therefore,
it does not support the study of individual movements (SL2). It is
possible to represent the area of the objects but only the aggregated
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Fig. 3. An overview of the MoReVis technique. (A) the input data is formed by convex regions that change over time. (B) the regions’ from all
timesteps (bigger circles indicate later timesteps) are projected to 1D. (C) the time slices are created with a rectangle for each polygon in the
corresponding timestep, and the vertical position is the projection value. Rectangles from the same object are connected, forming a curve. (D) the
height of the curve represents the area of each region. (E) the vertical positions are adjusted to represent the intersections in the original 2D space.
(F) Crossings that do not represent intersections are removed by changing their visual encoding.

area (WL3). As a cell has many objects, it could be interpreted as an
intersection, but objects are not guaranteed to intersect (SL4).

In summary, the above techniques have different limitations when
representing moving regions. Therefore, the visualizations produced
could be better for summarizing situations where the areas of objects
and their spatial interactions (intersections) are relevant. Our proposed
technique, MoReVis, solves these limitations by a non-trivial combina-
tion/extension of ideas from many existing visual summaries. Fig. 2
shows the result of using MoReVis in the synthetic dataset described
above (see a detailed discussion in Sec. 6.4). We highlight the repre-
sentation of areas (A1), the representation of the intersections between
objects (A2), and visual cues to denote the absence of objects’ intersec-
tions (A3). The following section describes the technique in detail.

4 MOREVIS

This section introduces MoReVis, a spatiotemporal visual summary
designed to overcome the limitations of previous methods (Sec. 3). The
algorithm to produce this visual summary consists of five steps (illus-
trated in Fig. 3): Projection of regions, Creation of time slices, Area
representation, Intersection representation, and Crossings removal. We
detail each step in the rest of this section.

4.1 Projection of regions
The input of our method is a moving regions dataset, i.e., a set of objects
O = {O1,O2, . . . ,On} that move over time. At a given timestep, each
object is associated with a convex region in the 2D plane (Fig. 3(A)).
Notice that these regions may change over time. Furthermore, the
objects do not need to be observed in all timesteps, different from
related techniques. Finally, each object can have additional associated
time-varying attributes representing either numerical or categorical
properties.

The first step in our algorithm is obtaining an initial 1D representa-
tion of the spatial movement of each object. This step aims to capture
the spatial context of the dataset. Projection of punctual data is a
prevalent task; however, there is important information on the extent
of regions in our situation. We only considered the region’s centroids
with projection methods that only support point data; otherwise, the
distance between regions was used.

The considered projection methods include dimensionality reduc-
tion techniques: PCA [42], MDS [31], force-directed layout [49], t-
SNE [16], UMAP [39], and space-filling techniques: Hilbert and Mor-
ton curves [38]. These projection methods are data-driven, and we used
as input the data of all objects to fit them, ignoring the time information.

In recent visual summaries [10, 57], the projection methods, such as
Stable Principal Components, were fitted with the data of each timestep
separately or using the data of the current and previous timesteps. Al-
though this procedure presented positive results, we have a different
scenario in which the number of objects may vary over time. Therefore,
the spatial representation can be compromised by applying projections
in each timestep separately, resulting in a degraded spatial represen-
tation when only one object is observed in a given timestep. For that

reason, we fit the projection with all points to obtain a general space
representation.

4.2 Creation of time slices
The MoReVis visualization comprises columns indicating the (discrete)
set of observed timesteps. We represent an object as a rectangle in
each column corresponding to timesteps where the object is observed.
The rectangles are vertically positioned so that their center corresponds
to the projection value obtained in the previous step. In addition, all
the rectangles have the same width (60% of the number of pixels
corresponding to a column in the plot) and the same height (which
will be adjusted later). We connect the rectangles corresponding to the
same object to form ribbons representing each object’s movement. The
color of each ribbon can be used to convey either object attributes (e.g.,
uncertainty), movement attributes (e.g., speed), or identifiers used to
distinguish the objects. In the example depicted in Fig. 3(C), colors are
used to identify different objects.

4.3 Area representation
The remaining steps of the MoReVis technique aim to adjust the initial
layout described so far to represent areas of objects and their intersec-
tions. To help describe these steps, we first set up some notation.

The area of a given object Oi at timestep t is denoted by ai,t . Ri,t
denotes the MoReVis rectangle associated with this object and timestep.
The vertical position of this rectangle’s center is denoted by y′i,t (value
obtained in the projection step) and its height by hi,t . Consider that the
positions y′i,t were normalized to the interval [0,1], so the scale is not
dependent on the projection method.

This step aims to scale rectangles’ height so that their area (in the
MoReVis plot) is proportional to their area in the original 2D space.
To do so, we want a scaling factor based on the objects’ overall spatial
extent. Furthermore, this scaling factor has to be the same for all
timesteps so that the rectangles’ heights are comparable through time.
To do so, we first define At = ∑i ai,t as the sum of the area of objects in
each timestep and AM = maxt{At}. We then set the rectangle’s height
hi,t =

ai,t

AM
. The intuition behind it is that the sum of the heights for all

the rectangles should be less than or equal to 1, and it is exactly only
when for the timesteps where the total area occupied by the objects
corresponds to AM , and the objects are disjoint.

4.4 Intersection representation
This final step aims to represent intersections between the objects, i.e.,
make the rectangles in the MoReVis plot intersect (by changing their
vertical position) with an intersection area proportional to the actual
intersection in the original 2D space. This problem is challenging since
the intersection patterns in 2D space can be complex (Fig. 4). For
this reason, we formulate this as an optimization problem that will
try to preserve the given spatial configuration as much as possible.
An optimization problem is going to be formulated for each timestep
independently. Thus, for clarity, the description below will omit the



Possible solutions
with spurious intersections

Spatial example with 
impossible representation

Fig. 4. This example shows that it might not be possible to accurately
represent all the 2D intersections in our 1D scheme, depending on the
data. In the 2D space, the purple square intersects three other squares
that do not intersect each other, as seen on the left. On the right, we have
three different layouts of vertical positioning of the rectangles; the width
of the rectangles is reduced to highlight the vertical intersections. In all
of the 1D representations, spurious intersections (marked with hatched
fills) appear that were not in the original space.

subscript t for all the variables. We now set some notation. Given
a pair of objects (Oi,O j), wi, j denotes the area of the intersection of
their regions (already divided by AM), and Ii, j denotes the vertical
intersection of their associated rectangles (Ri,R j).

As shown in Fig. 4, it is not always possible to represent all intersec-
tions correctly. Complex 2D intersection patterns can force the creation
of spurious intersections on the 1D representation. For this reason, we
set the goals of our optimization as follows:
(G1) For every intersection in the 2D space (wi, j > 0), we want that

the corresponding pair of rectangles also intersect in the 1D space,
with the 1D intersection being at least as big as the 2D intersection
(wi, j ≤ Ii, j).

(G2) We also want the 1D intersections not much bigger than the 2D
intersections.

(G3) If there is no intersection in the 2D space (wi, j = 0), we want
to avoid, as much as possible, having spurious intersections in 1D
(which happens when Ii, j > 0).

(G4) We want to keep the rectangles as close as possible to their
original positions obtained in the projection step to keep the space
representation.

To formulate the optimization problem, notice that the vertical in-
tersection Ii, j between two rectangles is a function of their height and
vertical position. With the height fixed, if there is no intersection
Ii, j = 0, if one rectangle contains the other Ii, j = min(hi,h j) and other-

wise Ii, j =
hi+h j

2 −|yi− y j|.
We first separate the pairs of objects in two disjoints subsets, A =

{(i, j)|wi, j > 0} and B = {(i, j)|wi, j = 0}, i.e., A is the subset of pair
of objects that intersect and B is the pair of objects that do not intersect.
For each pair (i, j) ∈ A, we define a constraint in our optimization to
achieve (G1) as:

wi, j ≤ Ii, j⇔ |yi− y j| ≤
hi +h j

2
−wi, j (1)

Note that we make G1 a constraint; for every intersection in the 2D
space, we will have the guarantee that it will also be present in the 1D
plot (no missing intersection).
Similarly, to achieve (G2), for each pair (i, j) ∈ A, we define a real
optimization variable ki, j ≥ 1 and add the following constraint:

Ii, j ≤ ki, jwi, j⇔ |yi− y j| ≥
hi +h j

2
− ki, jwi, j (2)

Since (G2) states that Ii, j should not be much bigger than wi, j, we
want each ki, j to be as small as possible. To this end, we define our first

loss as: F1 =
1
|A| ∑(i, j)∈A ki, j.

B CA

Fig. 5. (A) Our method first separates the objects into groups that
intersect each other in each timestep. (B) the intersection representation
optimization is used in each group. (C) the results of the last phase are
merged with another optimization, where the arrows indicate that the
groups were shifted to not intersect.

For the third goal (G3), we want to minimize the number of spurious
intersections. Therefore, we want to obtain Ii, j = 0, for every pair

(i, j) ∈ B. For this to happen, we must have |yi− y j| ≥
hi +h j

2
. To

count the number of spurious intersections for each pair in B, we add a
binary variable ci, j and a new constraint of the form:

|yi− y j| ≥ (1− ci, j)
hi +h j

2
(3)

When ci, j = 1, the constraint is redundant; when ci, j = 0, there is
no intersection between the rectangles. We therefore define our second

loss as F2 =
1
|B| ∑(i, j)∈B ci, j. Finally, to fulfill (G4), we desire that the

update positions yi are close to the 1D space representation y′i obtained
previously (in order to retain the spatial representation), so we add the
following quadratic error penalty: F3 =∑

n
i=1(y

′
i−yi)

2. We combine the
three losses into a single one by defining two parameters, λ1 > 0 and
λ2 > 0, and the final objective function of our minimization problem is
given by: λ1F1+λ2F2+F3. This formulation results in a mixed-integer
quadratic programming problem. This type of problem can be solved
with a branch-and-bound approach [33].

We notice that we can reduce the size of our optimization problem
(in the number of variables and constraints) by partitioning the set of ob-
jects into groups. Each group contains the objects that form a connected
region — i.e., there is a path of intersections connecting all objects in
the group. The six objects were separated into three groups in Fig. 5(A).
This separation then divides our optimization problem into smaller
problems that can be solved more efficiently. As two objects from two
different groups should not present an intersection, we only place them
after optimizing each group so there is no overlap. To do so, we use a
quadratic program. For each group g, we compute its total height hg, i.e.,
the size of the interval that contains all rectangles (yi−hi/2,yi +hi/2)
of the group and its mean position yg = hg/2+mini∈g(yi−hi/2). With
the groups ordered by mean position, consider the consecutive pair
(g,g′); we add constraints yg + hg/2 ≤ yg′ − hg′/2, so they will not
intersect. We use an objective function similar to F3 to minimize the
overall displacement, ∑g(yg− yg)

2, where the optimization variables
are only yg. We then place the individual groups and use the individual
subproblems to place the rectangles internally in each group.

4.5 Crossings removal
Lastly, representing the objects as curves and creating links between
rectangles can lead to undesired crossings between curves. Again,
removing all the crossings while preserving the spatial context in a
lower dimension is impossible. Some previous works [10, 57] also
identified this problem and proposed alternative projections that try
to generate more stable orderings. In Sec. 6, we evaluate different
projection strategies, including those mentioned. However, since even
with the use of these stable projections, we still can face undesired
crossings we decide to represent them visually. A crossing between
two links is spurious if the objects in the previous and the next timestep
present no intersection in the original space. Similar to the visual cues
studied by Bäuerle et. al. [8] to represent missing information, we
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Fig. 6. Visual interface implemented used to explore moving regions datasets. The interface comprises multiple coordinated views’: (A) the MoReVis
view, (B) the Data View to visualize the original dataset, (C) the Intersection View allows the detailed inspection of the spatial intersections, and (D)
the Parallel Coordinates plot that enables the filtering of the curves based on different attributes.

changed the encoding of every link involved in a spurious crossing to
exhibit hashed color or gradient in opacity.

5 VISUALIZATION INTERFACE

We implemented MoReVis in an interactive interface (shown in Fig. 6)
with four coordinated views: MoReVis, Data View, the Intersection
View, and the Parallel Coordinates. Each view will be explained in
detail in the following sub-sections.
MoReVis View: This is the main view in our system (Fig. 6(A)) and
aims to present the MoReVis plot alongside additional visual clues that
help in the data exploration process. This view also supports zooming
and panning and presents a tooltip showing detailed information about
the object when the mouse hovers over a curve.

Next to the y-axis, a color bar is present to interpret the 1D space
and to verify the quality of the projection inspired by the coloring from
SpatialRugs [11]. A 2D color map is placed on the original space,
and the coloring of the objects in each timestep is the color of the
centroids’ position. However, instead of keeping colors in the curves,
we moved all rectangles to the same horizontal position, blending the
color of overlapping rectangles. The 2D color map is displayed in the
Data View by hovering over this color bar. The idea is to inspect the
space’s most used regions represented by the vertical axis. Thus, to
evaluate the spatial transformation, we look for abrupt changes in color
as neighborhoods in the original space have similar colors.

Finally, the bar chart on the top indicates the number of spurious
intersections in each timestep (similar to the error plots presented in
[57]). For example, in Fig. 6(A), we can see that the maximum number
of spurious intersections in a single timestep is 2. The rectangles that
participate in spurious intersections are highlighted by hovering over
any of the bars.
Data View: This view presents the original moving regions dataset,
so the visual metaphor depends on the application domain. In our
application, we implemented two options. The first one is used for data
representing geographical trajectories. In this case, the view presents
a 2D geographical map with polygonal lines and shapes depicting the
moving regions as in Fig. 11 (Sec. 7.2). The second option works for
data representing object tracking in videos (as in Fig. 10 and Fig. 6(B));
we show the video frames with the bounding boxes of the tracked
objects. Finally, when the user hovers the mouse over a curve in the
MoReVis view, the data for the corresponding timestep is shown on the

Data View. Similarly, when a user clicks on a curve, the trajectory of
the centroids of the object is shown on the Data View.

Intersection View: This view is activated when the user creates a
brush on the MoReVis plot to present details of the structure of the
intersections. For each timestep in the horizontal extent of the brush,
we create a graph where nodes are objects (contained in the brush
region), and an edge is made if two rectangles intersect. We use a
vertical layout to display the graphs, similar to recent works [20, 52].
Each row is a node in this display, and a line between two rows is an
edge. Notice that we only show nodes with a non-zero degree. The
width of the edges is proportional to the intersection area, and black
edges indicate real intersections. In contrast, the red ones represent
spurious intersections (which are not present in the 2D original space).
For example, in Fig.6(C), it is possible to see a spurious intersection at
the timestep 940 between objects red and pink; on the Data View, it is
possible to verify that they are close but present no intersection. This
view was designed to facilitate the verification of details in intersections
and depicted possible errors.

Parallel Coordinates: We use a parallel coordinates plot [28] to repre-
sent object attributes, such as measures of their overall movement, area,
and presence on the video, as shown in Fig. 6(D). In the usage scenario
with hurricanes (Sec. 7.2), other attributes were also used: their max
velocity, wind speed, and pressure. Brushing the different axes in this
plot allows the user to filter the objects shown in the MoReVis view.

6 EXPERIMENTAL EVALUATION

This section presents a series of experiments to evaluate the MoReVis
algorithm in terms of its parameters.

6.1 Datasets
Our evaluation uses two real datasets from different domains: object
tracking in videos and hurricane trajectories. These datasets are de-
scribed in the following.

WILDTRACK [13]: consists of an object tracking dataset produced
from a video captured in a public open area with an intense movement
of people. The data contain the original video and the bounding boxes
of tracked people for each frame in the video. We only considered
a subset of 14 people (moving regions) with a long presence on the
video, having a total of 234 timesteps. We decided to filter the people to



generate more interpretable results that our users can evaluate through
our visualization.
HURDAT [32]: describes hurricane trajectories tracked since 2004.
Each trajectory contains several attributes, such as windy velocity,
pressure, and the spatial extent of the storm, with measurements in
intervals of 6 hours. We used each hurricane as a moving region, and
each timestep represents two days. The area is the convex hull that
includes all region’s measurements of the hurricane inside this time
interval. In addition, we disregard the year of occurrence for each
timestamp to investigate seasonal patterns. Finally, we selected the
hurricanes that started with the longitude inside the interval [−50,−20]
and latitude inside [10,20] (west coast of Africa). It resulted in a total
of 70 hurricane tractories along 52 timesteps.

6.2 Quality Metrics
We now describe the metrics used to evaluate the MoReVis layout.
Stress Measure: This metric is commonly used to assess the quality
of dimensionality reduction techniques, it is the difference between the
distances in the original and the projected spaces. More clearly, let
dOi,O j ,tp,tq be the distance between the region of objects Oi and O j at
timesteps tp and tq, and let d̂Oi,O j ,tp,tq denote the distance between the
respective rectangles. We use the length of the smallest segment that
links the regions or rectangles as the distance. We build the pairwise
distance matrices for all dOi,O j ,tp,tq called D and for all d̂Oi,O j ,tp,tq called
D̂. Consider that they are divided by the maximum value to remove the

scale. The stress measure is
√
||D− D̂||2F/||D||2F , where ||.||F denotes

de Frobenius norm of a matrix.
Crossing and Jump Distance: These metrics were present in evaluat-
ing space projection techniques for MotionLines [57]. The crossings
(change of curves order between timesteps) can generate misrepresenta-
tions of closeness. Consider that Si,t is the ranking of the object Oi on
timestep t in relation to the vertical positions. Given pair of consecutive
timesteps, we count the pairs of objects (Oi,O j) such that Si,t < S j,t
and Si,t+1 > S j,t+1 (their order changes). The crossing metric is the
average crossing calculated for all consecutive timesteps. Similarly, the
jump distance is the difference in the ranking of the objects between
timesteps; it is ∑i |Si,t −Si,t+1|. The sum is over every object present
in both timesteps. Similarly, the jump distance metric is the average
value for all timesteps.
Intersection Area Ratio Error: On our formulation (Sec. 4) for every
object’s intersection, we allow Ii, j to be bigger than wi, j . Therefore, to
evaluate the size of this “distortion”, we define the intersection area
ratio error as the mean of the ratios Ii, j/wi, j for all intersecting pairs of
objects (wi, j > 0).
Spurious Intersection Error: Although there is no missing in-
tersection in the MoReVis plot, spurious intersections may occur.
Therefore we define the spurious intersection error as the percentage
of intersections represented in a given plot that is spurious.

6.3 Quantitative Evaluation

Projection Evaluation: Similar to related techniques (Sec. 3), the
MoReVis result depends on the method used to transform the original
2D space into 1D. We evaluate a set of projections with both datasets
to identify the most suited projection technique. We proceed with this
evaluation in two steps. First, for each projection, we identify the best
parameter values. We used the practices discussed in the literature
and performed a grid search with all combinations to identify the
best parameter values. The details are available in the accompanying
supplementary material. We highlight that we used the region’s centroid
as the representative position for techniques that directly use positions
(i.e., PCA, Hilbert Curve, and Morton Curve). On the other hand, when
using techniques based on distances (i.e., force-directed layout, MDS,
T-SNE, and UMAp), we evaluated the use of distances between their
centroids and the distances between the regions (considering the extent).
With our datasets, the cost of computing distances between regions was
insignificant and can be more informative considering the extent. To
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Fig. 7. Comparison of all projection techniques (after parameter selec-
tion) with the two considered datasets. Each line represents a projection,
and each axis is a metric. The different projections present no impact on
the two metrics regarding intersections representation; however, consid-
ering the other metrics, PCA and force-directed obtained the best results
on both datasets.

select the best set of parameters, we chose the ones that minimized the
stress measure, crossings, and jump distance with this respective order
of priority.

In the second step, we compare the different techniques. Fig. 7
shows the results, where each line represents a technique, and the ver-
tical axes include the quality metrics (discussed in Sec. 6.2) and the
overall computing time of the MoReVis technique with each projection
technique. Notice that the choice of the technique has great importance
for the time necessary to compute the complete MoReVis result; slower
methods can almost double the required time. The projection technique
had a minor influence on the metrics related to the optimization step
in MoReVis: intersection area ratio and the number of spurious inter-
sections. We can also see that the space-filling curves and MDS did
not obtain the best result in any of the metrics. Finally, while t-SNE
and UMAP attained good results, they demand the evaluation of a large
number of parameters and involve a high computing time. Overall, the
two best techniques are the force-directed layout and PCA, with similar
1D representations. A different aspect is that PCA considers only the
centroids of points, while the force-directed considers the extent. One
drawback of the force-directed is the iterative process, making it slower
than PCA The good results of PCA can be interpreted because the data
is low-dimensional (2D). Considering these results, we used PCA in
the next steps of evaluations and usage scenarios.

Optimization Evaluation: Presented in Fig. 7, the spurious intersec-
tion error for WILDTRACK was 5%, for HURDAT was 10.5%, and
the intersection area ratio for both was 1.2. These results show that
our optimization obtained good approximations despite not getting a
perfect presentation of intersections in 1D.

The size of the problem impacts these metrics: the bigger the number
of objects in each group (as described in Sec. 4.4), the more complex the
intersection structure to be represented. To investigate this dependency,
we ran the MoReVis algorithm on a reduced set of objects randomly
sampled from the original dataset for each dataset. More clearly, we
generated ten random samples for different sample sizes, which were
given as input to the MoReVis algorithm. The average error measures
are reported in Fig. 8(left); the filled region marks the min and max val-
ues obtained. Notice that the algorithm can produce layouts with small
values of spurious intersection and intersection area ratio for a small set
of objects. However, the errors increase as the number of objects grows,
and more complex spatial structures happen. The number of objects
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Fig. 8. Analysis of the optimization results varying the dataset size
and the ratio of parameters λ2/λ1. The WILDTRACK has at max 14
objects and the HURDAT 70. The optimization method can present
lower quality and computing time in bigger datasets. According to the λ

parameters values, there is a trade-off between spurious intersections
and intersection area ratio.

also greatly impacts the computation time, as the number of constraints
and integer variables grows quadratically with the number of objects.
Fig. 8 (bottom-left) shows the total computation time divided by the
number of timesteps (the WILDTRACK presents more timesteps but
fewer objects than HURDAT). The mean time per timestep for small
samples (in both datasets) is at most 0.1 seconds. Still, in the case of
large samples for the HURDAT dataset, the computation can take, on
average, close to 0.2 seconds, which results in a total computation time
of around 30 seconds.

We now investigate the dependency of the quality metrics on the
parameters λ1 and λ2. To compare the different situations, we con-
sidered different values for the ratio λ2/λ1. When this value is small,
more weight is given to minimizing the intersection area ratio. On the
other hand, when the ratio is large, more weight is given to reducing
the number of spurious intersections. The results of this experiment are
shown in Fig. 8 (right). The expected relation between λ2/λ1 and the
metrics is observed. It is also possible to identify that the HURDAT
presented a longer computing time when there was more importance on
preserving spurious intersections. Depending on the application, one
can set the parameters to prioritize one of the aspects. In all the usage
scenarios this paper presents, we set both λ1 = λ2 = 1.

6.4 Visual Evaluation

We now present and discuss the visual results of MoReVis with some
of our datasets. Fig. 2 shows the technique for the synthetic dataset
described in Sec. 3. We can identify the scale of the area (A1), with
the pink object having a greater extent that is decreasing through time.
In contrast, the objects represented in orange and red have increasing
regions. Furthermore, it is possible to identify that the objects started

intersecting close to the middle of the observation period and almost
overlapped entirely by the end (A2). In (A3), we demonstrate the
importance of the crossing removal step. Notice that at this timestep,
the pink curve crosses the other two curves that do not intersect in
the original space. The visual cue present in MoReVis indicates this
inconsistency, and the final result presents no missing or spurious
intersections. This example illustrates the effectiveness of MoReVis in
supporting the tasks discussed in Sec. 3.

The example presented in Fig. 9 aims to show the importance of
the optimization step in MoReVis. To do this, we compare MoReVis
against an adapted version of MotionLines [57] (using the SPC projec-
tion) that represents areas on the WILDTRACK dataset. Considering
the same notation of Sec. 4.3, in the MotionLines adaptation we set
the width of the curves by hi,t = s

ai,t

AM
. This s parameter permits us to

generate different scales of the curves of the plot, and we evaluated
s = 0.5 and s = 1. The curves are plotted in blue, and some rectangles
are highlighted by filling in orange, purple, or red if they had a spurious
intersection, missing intersection, or both, respectively. Notice that
this trivial adaptation of MotionLines presents some uncontrolled flaws
in the representation of intersections. There are missing intersections
when the curves are thin, as shown on the top plot. When the curves
are thick, many spurious intersections appear. This is evident at the
end of the observed period, where many close objects have spurious
intersections for an extended period. In the bottom plot, the MoReVis
result can adjust the position of curves so that there are no missing
intersections and just a few spurious intersections.

In summary, when compared with other techniques, MoReVis can
represent objects’ area and spatial interactions. These issues were
not considered in previous works. Furthermore, our results show that
while it is true that we can adapt previous techniques to represent the
area (e.g., MotionRugs, MotionLines), these solutions are insufficient.
Therefore, non-trivial solutions are needed to achieve the objective and
our proposal points in that direction. In particular, when considering
the more widely used solutions like space-time cubes and animations,
MoReVis can provide an overview of all the spatial movement, area,
and intersections simultaneously without requiring extensive naviga-
tional interactions or spatial distortions caused by 3D views. All of this
allows for fast identification of spatial events, temporal patterns con-
cerning spatial extents (areas), and direct comparison across different
timesteps.

7 USAGE SCENARIOS

We present two usage scenarios to demonstrate the applicability of
MoReVis in different domains. The visual interface presented in Sec. 5
was used to produce the analysis.

7.1 Object tracking data

First, we explore the WIDLTRACK dataset described in Sec. 6.1. It
consists of people tracked on a video captured at an entrance of a
building. In the video, many pedestrians pass by that mostly enter and
leave the scene quickly. We applied filtering to select objects that stayed
at least 200 and less than 1000 frames on the screen. The MoReVis
result with the PCA projection is depicted in Fig. 10. The visualization
elucidated several properties of the data, discussed in the following. At
the start, the violet curve on the left (A1) presents a significant change
in the vertical position, suggesting a broad movement that passes
through a large extent of the scene. The curve also presents a small
width, indicating that the pedestrian has a relatively small bounding
box, i.e., is far from the camera. Around the timestep 900, this curve
jumps from the top of the plot to the bottom; this was identified as
an error in the original data: two persons were classified as the same.
Fig. 10(A2) shows the trajectory of the original video, forming a zig-
zag due to this classification error. Another example is highlighted as
(B1), which consists of three thin curves (light green, orange, and pink)
overlapping. With frame (B2), we identify three classified pedestrians
walking together with intersecting bounding boxes represented in the
plot. As they are distant from the camera, their curves are thin.
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Fig. 9. Comparison of adapted MotionLines that represent areas and MoReVis. We present the adapted MotionLines result with two area factors
to demonstrate the impact of the width of the curves on the intersections. The curves are colored to indicate the presence of errors. There is a
trade-off based on the area factor, with s = 0.5 there are more missing intersections while with s = 1.0 more spurious intersections occur. MoReVis
can correctly represent most of these intersections.

The green curve (C1) presents a significant increase in its width. This
occurs due to a pedestrian walking in the camera’s direction, getting
close to it, as shown in (C2). This pedestrian leaves the screen for a
while and later returns (at timestep 1700) to the viewport. The curves
inside the region (D1) present the most intersections in the observed
period. This result relates to a group meeting in the middle of the
scene, as depicted in (D2). One detail is that the yellow curve does
not intersect with the main group (blue, red, and brown). This can be
verified in the plot and also in the frame view. However, it crosses with
the green object between timesteps 1800 and 1900. In this portion of
the visualization, there are also some spurious intersections due to the
complexity of intersections of the data. The bar chart on the top shows
four spurious intersections that can be detailed with the Intersection
View.

7.2 Hurricane data
A common analysis with hurricane data is comparing the trajectories
with close start positions [12, 41, 51]. In this use case, we perform
such a task using the portion of the HURDAT dataset (Sec. 6.1) that
corresponds to hurricanes that started with longitude between −50◦
and −20◦ and latitude between 0◦ and 20◦, a region close to the west
coast of Africa. The MoReVis plot generated is presented in Fig. 11.
To interpret the space transformation made by PCA, we annotate
the color bar on the left, indicating the dominant regions in different
vertical intervals of the 1D space representation. The color map is
also presented on the map at the left. We can see general movement
trends, with many hurricanes starting close to the west coast of Africa
and going towards. Some more prolonged hurricanes move after
towards Europe. The color on the curves shows the air pressure for
each hurricane. With the coloring, it is possible to identify an inverse
relationship between the area and the pressure. Additional interesting
general patterns include that hurricanes usually start with small widths
and increase through time. As MoReVis does not suffer from occlusion
and tries to minimize spurious intersections, the hurricanes’ trajectories
are more easily identified. This example also shows the importance of
the crossings removal step (Sec. 4.5). The intersections in this example
are situations where hurricanes pass through the same region at the
same period of the year. At the bottom of the plot, we can identify
the example marked with A1. These same hurricanes are highlighted
in A2 and shown on a map in A3, with a color update to distinguish
them. We have two separate groups that have intersections for some

timesteps, and both occur near the east coast of North America.
One hurricane that stands out is marked with (B); it has the most

significant area observed and entered the most inside Europe. This
was hurricane Karl from 2004 which peaked as a category four on
the Saffir-Simpson scale. Its intensity quickly diminished, causing no
fatalities when it reached Norway at the end of its trajectory.

8 USER STUDY

We performed a user study to evaluate the ease of using MoReVis on
analytical scenarios. In this section, we describe the details of the
survey and the results.

8.1 Study Procedure
We had nine participants in the study (eight undergraduate students
and one master’s student). Six already had previous experience with
spatiotemporal data, and four were familiar with visualization tech-
niques for this type of data. Participation was voluntary and unpaid.
The experiment was conducted asynchronously, i.e., participants were
free to run the study at any time. First, participants had to watch a
10-minute video with a general explanation of spatiotemporal data, a
simple explanation of MoReVis, and a description of the visualization
web interface.

Subsequently, the participants had to perform three groups of ac-
tivities between tasks and questions. The first group was designed to
validate if they understood MoReVis. The second group dealt with
spatiotemporal aspects of visualization. Finally, the third group was
about object intersections.

Tasks: The tasks of group one (T 1) were: counting the objects in
the frame, counting the number of intersections of an object, and
identifying the time interval with the most intersections. The tasks of
group two (T 2) were: identifying the objects with the most movement
on the screen, relating regions of the original space and intervals in the
1D space representation, identifying the region of the original space
with the largest number of objects, identifying the object with the
largest area, and interpreting the event that caused this largest area.
Finally, the tasks of group three (T 3) were: counting the number of
intersections of an object, interpreting these intersections, identifying
the object that intersects with another specific object, identifying the
time step interval with the largest number of intersections, interpreting
the event that caused this largest number of intersections, identifying a
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Fig. 11. Usage scenario with a selection of the HURDAT dataset. The y-axis at the left indicates the dominant region of the rectangles in the interval.
It is possible to identify a general trend of trajectories that start in Africa, go to America, and return to Europe. On A1 is possible to see two groups of
hurricanes that intersect each other in a similar region and separated time intervals, they are highlighted at A2 and A3. On B is marked hurricane
Karl which presented one of the biggest areas of action in the observed period.

pair of objects with spurious intersections in a specific timestep, and
identifying all objects with spurious intersections in a specific time step
interval.

Questions: The questions for tasks T 2 were: (Q1) “Is it easy to
interpret distances on the MoReVis view?", (Q2) “Is it easy to interpret
the 1D representation of space in the MoReVis view?", (Q3) “Does
the color bar on the left assist in interpreting the 1D representation
of the space in the MoReVis view?" and (Q4) “Is it easy to identify
the area of objects in the MoReVis visualization?". Using the same
format, the questions asked after tasks T 3 were: (Q5) “Is it easy to
identify intersections between objects?", (Q6) “Is it easy to identify
if an intersection is spurious?", (Q7) “Is it easy to identify the region
that has spurious intersections?", (Q8) “Does the selection in the
MoReVis view help to analyze intersections?", and (Q9) “Does the
representation of intersections in the MoReVis view facilitate the data’s
spatial interpretation?". We asked users to comment on answers Q2,
Q5, Q6, and Q9, asked them which of the three other interface views
they found useful and a final comment.

8.2 Results
One of the nine participants responded that he did not understand
MoReVis; therefore, we eliminated his/her responses from the analy-
sis. As for the other responses to the validation stage, all participants
answered the first question correctly. For the other two questions, we
had one incorrect answer for each (different participants). With that,
we kept eight participants in the analysis of the results. When asked
about the object with the most movement on the screen in one of the
tasks of T 1, three participants responded with objects with the longest

presence observed; this may be due to little training. However, in all
other questions, users gave correct or approximate answers. In ques-
tions regarding T 2, users could identify and interpret the intersections
correctly, as well as identify and analyze spurious intersections. The
summary of the answers to the quantitative questions is available in
Fig. 12: In the following, we comment on some important aspects:

Space representation (Q1, Q2, Q4): Most users found it easy to
understand the representation of space, including the area of objects;
those who found it more difficult agreed that it could be solved with
proper training. One participant commented, “It is possible to easily
visualize distances across the curve path and how objects have changed
over time and visualize their region in space and intersection with
other objects". Another comment: “The most complex thing for me is
understanding the transformation from 2D into 1D. With this knowledge,
exploration becomes simple."

Representation of intersections (Q5, Q6, Q7, Q9): Seven users
agreed that it was easy to identify intersections; one commented, “In-
tersections are clear in the visualization". Six of the users found it easy
to identify spurious intersections (Q6). The participant who strongly
disagreed with Q6 commented, “If you do not use the selection and the
Intersection view, it is hardly possible to differentiate between spurious
and non-spurious intersections". We agree that the MoReVis view
does not have the necessary support to differentiate spurious intersec-
tions; however, we offer a rich set of interactive features to address this
limitation. Five participants strongly agree that the representation of in-
tersections makes it easier to interpret the data (Q9), with two agreeing.
One commented, “It helps to visualize information that would be very
chaotic with the data view alone".



Fig. 12. Answers for questions Q1-Q9 from 8 participants about the
effectiveness of MoReVis. The bar length indicates the percentage of re-
spondents who have chosen that specific Likert level. The predominance
of blue tones indicates a positive opinion about the technique.

Auxiliary Views (Q2, Q3, Q7, Q8): Beyond the MoReVis technique,
users also considered the other interface tools necessary. Despite the
simple blending applied in the color bar, the response (Q3) was positive.
In the comments on question Q2, users mentioned this graphic as
helpful for representing space. One of the comments was, “By looking
at the color bar and examining how the curves in the MoReVis view
translate to the original data view, one can understand where each
original region was mapped". Similarly, the intersection view was
rated as necessary as well. Most participants found the selection (to
highlight the Intersection View) very useful; one of the comments in
Q7 was, “The intersection view helps". When asked about the most
essential linked views, all users responded that the Intersection View
and the Data View were necessary, while only two found the parallel
coordinates important. This could have occurred due to the small size
of the datasets.

Scope for improvements: Although MoReVis showed promising re-
sults in representing spatiotemporal features of objects, there are areas
where the technique can be improved. Three of the eight participants
claimed intermediate experience with visualization, and one claimed
advanced knowledge. Because of this, it was suggested improvements
to our proposal, particularly regarding the visualization interface. Some
users suggested adding more interactions with the Data View, a play
button to show the data as an animation, and a link to the Intersection
View, showing the respective intersection and data while the animation
occurs. A suggestion was also to permit queries to compare pairs of
trajectories, comparing the distance and trends between two highlighted
objects. One user also suggested higher-level functionality incorporat-
ing anomaly detection techniques to indicate significant aspects of the
data to the user. These functionalities could be added to MoReVis with
little effort, and we consider them possible future work to be pursued
in this line of research.

9 DISCUSSION

As shown in Sec. 7, MoReVis can provide an effective spatiotemporal
visual summary of moving regions datasets through its representation
of space and the areas and intersections. This section discusses rel-
evant points concerning the MoReVis technique, its limitations, and
opportunities for future improvements.

Projection of centroids: In our current implementation, we assume
that the region covered by an object at each timestep is convex.
When they are not convex, the centroid could fall outside the region.
Therefore, the spatial representation might not be accurate for some
projection methods (such as PCA). We highlight that this is not a

strong constraint since, in this case, one can use the convex hull of
each region or use distances between the areas instead of the distance
between centroids. All the current experiments and use cases presented
in this paper were done using convex moving regions. We plan to
investigate how our algorithm and visualization would behave for
non-convex moving regions in the future.

Intersection representation: To develop our optimization model for
intersection representation, we chose a set of goals, as it is not al-
ways possible to obtain a perfect solution. We opt to represent every
intersection of the original space with the cost of over-representing
intersections areas and spurious intersections. Sec. 6 verified that these
error values were small in the two example datasets. Also, to deal with
this error, our visualization interface added visual hints that indicate
the timesteps and regions with the presence of errors. Furthermore,
the Intersection View permits a detailed verification of intersections
presented by our approach.

Scalability: Our solution solves a mixed-integer program for each
time step, which is computationally expensive. For example, if we
have n objects, the optimization problem can have up to n2−n integer
variables. In the case of the HURDAT dataset, we used only 70 hurri-
canes, and it took 5 seconds, but if we use all 298 objects, it will take
a few minutes. Similarly, in the WILDTRACK dataset, we filtered 14
objects — people who had more permanence in the video scene — and
our solution took 5 seconds; however, if we process the entire dataset
(282 objects), it takes 5 minutes. We are interested in improving this
process stage, which is an immediate future work. Nevertheless, this
task can be pre-processed since it is only performed once. We used this
strategy in the user study to have an interactive experience. We can also
see scalability in the visual representation; MoReVis might be cluttered
for large datasets. In this case, interactivity is essential to reduce the
number of moving regions shown. We also plan to investigate the use
of alternative representations (such as density-based approaches) to
overcome this limitation.

Future applications: We plan to apply our method to analyze other
types of datasets in the future. One possible application is to analyze
clusters of trajectory data. It is easy to see that a group of trajectories
can be seen as a moving region. Another application is the visualization
of trajectories with uncertainty. These trajectories are often used to
model the spatial uncertainty due, for example, to errors in sensor
measurements or variations in prediction models. We believe that
MoReVis can be effective in such applications. One useful and simple
adaptation would be to consider datasets where objects can present
spatial splits and merges as the storm cells analyzed in Hornero [17].

10 CONCLUSION

We presented MoReVis, a visual summary that provides an overview
of moving regions datasets. This technique is based on a carefully
designed optimization problem to build the visualization layout.
MoReVis is applicable in several domains and analysis situations, as
shown in our use cases and discussion. Our main directions for future
work are to reduce the computation cost of our algorithm and apply our
technique to summarize clustering results and trajectories that model
the spatial uncertainty of moving objects.
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