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Abstract—Temporal graphs are commonly used to represent4
complex systems and track the evolution of their constituents5
over time. Visualizing these graphs is crucial as it allows one to6
quickly identify anomalies, trends, patterns, and other properties7
that facilitate better decision-making. In this context, selecting an8
appropriate temporal resolution is essential for constructing and vi-9
sually analyzing the layout. The choice of resolution is particularly10
important, especially when dealing with temporally sparse graphs.11
In such cases, changing the temporal resolution by grouping events12
(i.e., edges) from consecutive timestamps — a technique known as13
timeslicing — can aid in the analysis and reveal patterns that might14
not be discernible otherwise. However, selecting an appropriate15
temporal resolution is a challenging task. In this paper, we propose16
ZigzagNetVis, a methodology that suggests temporal resolutions17
potentially relevant for analyzing a given graph, i.e., resolutions18
that lead to substantial topological changes in the graph structure.19
ZigzagNetVis achieves this by leveraging zigzag persistent homol-20
ogy, a well-established technique from Topological Data Analysis21
(TDA). To improve visual graph analysis, ZigzagNetVis incorpo-22
rates the colored barcode, a novel timeline-based visualization23
inspired by persistence barcodes commonly used in TDA. We also24
contribute with a web-based system prototype that implements25
suggestion methodology and visualization tools. Finally, we demon-26
strate the usefulness and effectiveness of ZigzagNetVis through a27
usage scenario, a user study with 27 participants, and a detailed28
quantitative evaluation.29

Index Terms—Graph visualization, persistence barcode, pers-30
istent homology, temporal graphs, temporal resolution, timeslicing.31
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I. INTRODUCTION 32

T EMPORAL graphs (or temporal networks) constitute a 33

powerful framework for modeling dynamic and complex 34

systems from a variety of domains, including computer science, 35

social sciences, and biology [26]. The visual representation of 36

temporal graph data provides an intuitive and interactive way to 37

explore complex relationships and dynamic changes over time. 38

By using appropriate visualization techniques, researchers and 39

practitioners are able to gain insights concerning the temporal 40

evolution of the graph structure, to identify trends and anomalies, 41

and detect important events that impact the system being studied. 42

Many studies have proposed graph drawing methods and 43

visualizations to enhance the analysis of real-world temporal 44

graphs. Examples include animated and timeline-based visu- 45

alizations [5] (e.g., animated node-link diagrams and Massive 46

Sequence View layout [62]), optimization of node position- 47

ing [35], [57], edge data sampling [70], summarization of visual 48

representations [56]. 49

Another important type of strategy concerns graph timeslic- 50

ing, i.e., the choice of a timeslice length that defines the tem- 51

poral granularity at which the graph will be studied (e.g., daily 52

or weekly). In this context, although non-uniform timeslicing 53

methods have been proposed in recent years [3], [47], [65], the 54

most adopted strategy is uniform timeslicing, where timeslices 55

of equal length represent the graph over time [25], [34], [35], 56

[53], [63], [68], [70]. 57

Once the timeslice length has been chosen, one divides the 58

time interval into windows, and builds in each of them a graph, 59

called a snapshot, enabling the use of standard graph analysis 60

techniques. In this paper, in order to present a more general 61

point of view, we will use the term temporal resolution, which 62

corresponds to timeslice length, but expressed in terms of the 63

graph’s initial resolution rather than an arbitrary unit of time 64

(both quantities are proportional). 65

Different temporal resolutions reveal different patterns, mak- 66

ing the choice of resolution crucial for effective analysis. This 67

is particularly relevant when dealing with temporally sparse 68

graphs; in this case, global pattern identification might not be 69

easy (or even possible) with too-fine resolutions due to the 70

elevated number of timestamps. However, choosing a suitable 71

temporal resolution is not a trivial task. In most cases, it requires 72

exploratory analyses leading to empirical choices or input from 73

a domain expert with prior knowledge of suitable resolutions. 74

To date, a handful of studies have tackled the problem of auto- 75

matic resolution selection. Some are based on features computed 76
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on each snapshot (e.g., mean degree or clustering coefficient) and77

between consecutive snapshots (e.g., Jaccard similarity between78

nodes or edges); optimal resolutions are then obtained via max-79

imization or peak detection [28], [55]. However, by considering80

only the consecutive snapshots, these strategies miss information81

regarding the graph’s global behavior. Incorporating larger-scale82

dynamics has been explored, notably by finding the largest83

intervals over which features “persist”, through minimization of84

a trade-off information/variance [17], [21], [44], [55], [58], [59].85

However, these methods require additional hyperparameters or86

only study snapshots through specific features, thereby losing87

the structural information of the underlying graphs.88

In order to study a temporal graph as a whole, and not89

fragmented into isolated snapshots, we will use tools from Topo-90

logical Data Analysis (TDA), and more particularly persistent91

homology (PH) and zigzag persistent homology (zigzag PH).92

This theory, which aims to capture relevant topological and geo-93

metric features from datasets, has already been applied to a wide94

range of problems concerning the analysis and visualization of95

graphs [2]. Although its application to dynamic graphs is still in96

its early stages, a common methodology is emerging: gathering97

the snapshots into a zigzag module, and analyze its persistence98

barcode [22], [30], [31], [41], [42]. We emphasize that, in this99

context, one of the main benefits of employing zigzag PH instead100

of ordinary PH is that the former allows tracking the appearance,101

disappearance, merge, and split of connected components, while102

the latter only allows appearance and merge. To the best of our103

knowledge, no study has applied PH to the problem of temporal104

resolution selection.105

Our contributions: This paper introduces ZigzagNetVis, a106

methodology that employs zigzag PH to suggest potentially107

relevant temporal resolutions for visualizing temporal graphs.108

These resolutions are identified based on the degree of topo-109

logical change they induce. As we will discuss throughout the110

article, leveraging ideas from TDA yields new valuable insights111

for this problem.112

First of all, the structure of zigzag module, by including113

not only pointwise information (snapshots) but also dynamic114

information (their relationship), allows one to study a temporal115

graph as a whole. We propose a topological interpretation of the116

effect of changing resolution, classified as timestamps shift or117

structural change.118

Second, compared to certain features used in the literature, PH119

can be clearly interpreted and visualized through the persistence120

barcodes, a structure that, in the same vein as a tracking graph,121

captures the dynamics of a temporal graph. An important feature122

of the barcodes is that we can compare them via the bottleneck123

distance. Based on this idea, we devise an explainability pipeline124

that spots the most important differences between resolutions.125

In addition, to enhance the visual analysis, ZigzagNetVis126

incorporates a novel timeline-based visualization inspired by the127

persistence barcodes. It was specifically designed to enhance the128

analysis of connected components’ structure and evolution.129

Last, we address an important related issue: the question of se-130

lecting an “optimal” resolution is ill-posed. Indeed, different res-131

olutions may be relevant for uncovering different patterns. Fur-132

thermore, no reference benchmark is available. We contribute to133

this problem by bringing together various results scattered in the 134

literature, and by comparing our approach with other traditional 135

methods through an empirical study of two real-world datasets. 136

In summary, our main contributions are: (i) A layout-agnostic 137

method that leverages zigzag PH to suggest potentially relevant 138

temporal resolutions for graph visualization; (ii) An explain- 139

ability method for identifying the major topological differences 140

caused by two different resolutions; (iii) A timeline layout 141

inspired by the barcodes from TDA and which depicts the 142

evolutionary behavior of the graph’s connected components; (iv) 143

The prototype of a web-based system with interactive linked 144

views to assist in the graph analysis; (v) Evaluation using a 145

usage scenario, a user study (27 participants), and a quantitative 146

comparison with existing features. 147

II. BACKGROUND AND RELATED WORK 148

A. Temporal Graphs and Timeslicing 149

Timeslicing: Let N be an integer representing the maximal 150

time value. A temporal graph is a graph G and a collection 151

of pairs (e, t), where e is an edge of G and t is an integer in 152

[0, N ]. In practice, e represents an interaction between its nodes, 153

occurring at time t. This formalism underpins many models of 154

dynamic phenomena, ranging from communication networks 155

to biological mechanisms [26]. The value r0 = 1 is called the 156

initial resolution and the integers t ∈ [0, N ] are referred to as the 157

initial timestamps. As in [36], the initial resolution represents the 158

time interval in which the graph data was originally recorded, 159

e.g., timestamps in r0 = 1 span a 1-day interval in the Enron 160

network [29] and 20 seconds in the Primary School network [23]. 161

In the context of temporal graph analysis, one is interested 162

in the graphical representation and analysis of temporal graphs. 163

To this end, the usual approach (used, e.g., in [35], [53], [68]) 164

consists in choosing an integer r > 1, regularly cutting the 165

interval [0, N ] into M = �N/r� sub-intervals [kr, (k + 1)r], 166

where k ∈ [0,M ] is an integer, and building M + 1 graphs 167

{Gk}Mk=0. Each graph Gk contains the edges (e, t) where t ∈ 168

[kr, (k + 1)r], and and the nodes of these edges. In other words, 169

we build the graphs by collecting the edges active during the 170

corresponding intervals and discarding the isolated nodes. The 171

parameter r is called the resolution, and the integers k ∈ [0,M ] 172

are the corresponding timestamps. In what follows, we will refer 173

to this process as partition timeslicing. The first and second 174

rows of Fig. 1 represent the collection of graphs obtained via 175

this process for resolutions 1 and 2, respectively. One observes 176

that, for the initial resolution, there are two timestamps where 177

the blue nodes are not present. This phenomenon disappears 178

at resolution 2. In general, as the resolution increases, both the 179

number of edges and nodes present at each timestamp may grow. 180

We will also consider another cutting process, called sliding- 181

window timeslicing [42], [63]. As before, let r be a resolution 182

parameter. For each initial timestamp k, we build the graph Gk 183

whose edges are those with the activation time t contained in 184

[k − r/2, k + r/2]. Unlike partition timeslicing, which sepa- 185

rates edges into disjoint intervals, sliding-window timeslicing 186

allows activation intervals to overlap (see Fig. 1). Note that the 187

graphs obtained for an even resolution r = 2s are identical to 188
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Fig. 1. A temporal graph of initial resolution 1 (first row) and its partition and
sliding-window timeslicing at resolution r = 2 (second and third rows).

those obtained for the next odd resolution r = 2s+ 1, since the189

edges’ activation times are integers. Thus, in the rest of this190

article, we will consider sliding-window timeslicing for even191

values of resolution only.192

A characteristic shared by these two approaches is that all193

timeslices have the same length, known as uniform timeslicing.194

Although not as popular, the idea of non-uniform timesciling has195

also been considered in recent years. This type of timeslicing196

allows timeslices with different lengths over time. In graph197

visualization, we may find timeslices whose lengths depend198

on how many consecutive timestamps have similar graph struc-199

ture [3] and how active (in terms of bursts of events) the graph200

is over time. As an example of this last case, while Ponciano et201

al. [47] use long timeslices to represent intervals with bursts of202

events, Wang et al. [65] adopt short timeslices to analyze such203

intervals. In this paper, we focus on uniform timeslicing, the most204

commonly adopted approach [25], [28], [34], [63], [68], [70]. In205

this context, the choice of the resolution r can strongly impact the206

analysis: an overly coarse cut erases short-duration phenomena,207

while an overly fine cut disrupts continuous phenomena [47].208

This impact has been studied in [32], [53], by comparing features209

of the resulting temporal graphs (e.g., the average degree of their210

nodes or the size of their connected components). It is worth211

noting that the problem persists in the context of non-uniform212

timeslicing, since such methods often rely on selecting an initial213

resolution, that has to be chosen wisely [44]. Although it is a214

crucial parameter, the resolutions are often chosen heuristically,215

and the question of their selection is barely raised. Keeping in216

mind the potential applications of temporal graph analysis, our217

work aims to describe and implement an automatic method of218

resolution selection.219

Automatic resolution detection: Among the works that tackle220

this problem, two strategies are found. The first is to define221

the parameter via the maximization of features’ values or the222

minimization of trade-offs between features [28], [58], [59].223

For example, MoNetExplorer [28] is a visual analytic system224

that ranks candidate timeslice lengths (i.e., window sizes) based225

on three motif-based features: motif stability, motif fidelity, and226

motif clusterness, which are computed for each candidate. Not227

every possible length becomes a candidate; only those following228

a predefined base time unit. For example, if the base is a month,229

there are 12 candidates (lengths ranging from one to twelve230

months). Other examples include [58], where the resolution is 231

found by minimizing a trade-off between the compression ratio 232

and the variance of a sequence of features, as well as [59], which 233

seeks to minimize the variance of several features (positional 234

dynamicity, degree, closeness, and betweenness centrality). 235

The second strategy involves abrupt change detection in time 236

series, for instance, from the Jaccard distance between snap- 237

shots [44], from compression ratios [21] or from coefficients 238

of convergence [55]. In the same vein, [16] detects peaks from 239

the autocorrelation of the time series of features. Our method 240

employs this strategy since it can be naturally combined with 241

features from Topological Data Analysis. To highlight the value 242

of our method, we provide a precise theoretical justification and 243

an extensive empirical analysis. 244

As pointed out by the studies above [32], several distinct 245

resolutions may be relevant for analyzing a temporal graph. 246

Therefore, the question of a “correct” interval length is ill-posed. 247

In this work, we circumvent this issue by suggesting various 248

values — without relying on predefined user-selected candidates 249

or other parameters — and explaining their relevance. 250

B. Persistent Homology Applied to Graphs 251

The mathematical tools used in this article are drawn from 252

Topological Data Analysis (TDA), a field at the intersection 253

of computational geometry, algebraic topology, and data anal- 254

ysis [14]. Persistent homology (PH), one of its most popular 255

techniques, allows us to infer homology groups of a dataset [43]. 256

It has been applied to a wide range of problems, including 257

medicine, physics, computer vision, and machine learning, 258

among others. However, its application to the study of temporal 259

graphs is relatively new. 260

Analysis of graphs: PH is mainly used when the dataset is a 261

point cloud, an image, a scalar function, or a graph. We refer 262

the reader to the survey [2] for an extensive presentation of how 263

TDA has been applied to graph analysis. As an intermediary 264

construction between the input data and PH, the user must 265

choose a filtration, i.e., a non-decreasing family of subspaces 266

that covers the data. To this end, several popular filtrations exist, 267

such as the Rips filtration. 268

However, in our context, the input data is not a single graph but 269

a sequence of graphs, and PH cannot be used directly. This is due 270

to the fact that the sequence may not be non-decreasing: as time 271

progresses, nodes or edges may disappear. As a consequence, 272

the temporal graph may not form a filtration. To get around this 273

problem, one strategy involves applying PH to each graph in the 274

sequence and analyzing the results, as [25] does in the context 275

of temporal graph exploration. Although it allows exhibiting 276

global properties of the data, this method does not use the full 277

potential of PH, since persistence is computed only at the level 278

of each graph, and not throughout the sequence. In particular, 279

no temporal information is contained in the persistence diagram. 280

Moreover, this method lacks the theoretical guarantees of TDA, 281

such as stability. 282

As an alternative, one can use zigzag persistent homology 283

(zigzag PH), which we will describe in Section II-C. This vari- 284

ation of PH has already been used in the context of topological 285
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bootstrapping, thresholding, and parameter selection. Unlike286

ordinary PH, it is based on the notion of zigzag filtrations, which287

do not have to be non-decreasing. In particular, it can be applied288

to a temporal graph, allowing one to compute the persistence of289

the sequence of graphs all at once [22], [30], [31], [41], [42]. By290

computing the persistence barcode, the main object of TDA and291

described in the next section, one can detect the global behavior292

of the graph (e.g., the evolution of its connected components,293

periodic or chaotic patterns). Our work brings these ideas to the294

problem of resolution selection by investigating the link between295

the stability of zigzag persistence modules and the choice of296

a resolution. In addition, we also devised a new visualization297

layout based on PH.298

We point out that, in this article, the topology of the graphs will299

be studied through the lenses of the homology H0, that is, the300

connected components. Ordinary PH enables us to track these301

components over time, limited to the case of appearance and302

merge. In addition, employing zigzag PH allows one to study the303

disappearance and splitting of connected components, phenom-304

ena that occur in temporal graphs. As exemplified by numerous305

articles in the TDA literature,H0 contains sufficient information306

to solve certain problems [7], [13], [45], [46]. Furthermore, in307

the particular context of temporal graph visualization, it has been308

reported that the analysis of connected components allows for309

a rich exploration of the data [37], [38], [39], [66]. Since the310

purpose of this article is to visualize the formation of groups311

within networks, i.e., of connected components, we will focus312

on H0. The higher homology groups Hi, i > 0, although they313

could capture additional information (e.g., tunnels, voids), are314

beyond the scope of the paper.315

Visualization: TDA has also seen applications in the context of316

(non-temporal) graph visualization. By quantifying the strength317

of connections between the nodes of the graph, TDA can improve318

force-directed layouts and facilitate interaction with them [20],319

[57]. One may also consider the connectivity between commu-320

nities, resulting in new representations, such as those in [37],321

[51].322

In contrast, applications of TDA to the visualization of tem-323

poral graphs are few. The first work is found in [38], where the324

persistence diagram is used as a means to visualize the connected325

components generated by a scalar field. However, in this case,326

PH is computed at the level of each snapshot, and therefore does327

not capture information about the dynamics of the data.To our328

knowledge, only [25], [42] propose visual layouts incorporating329

temporal information. The former consists of a curve, exhibiting330

patterns and changes in behavior over time. However, it does331

not provide information concerning the topology of the graphs332

at each snapshot. The latter layout uses the persistence barcodes333

given by the zigzag PH. It displays the topological properties of334

the graphs at each timestamp and shows how they evolve over335

time. Nevertheless, in some contexts, focusing only on graphs’336

topological properties, such as their number of connected com-337

ponents, can be too coarse and make analysis and visualization338

difficult for the user. An important contribution of our work339

is to enhance this representation by incorporating information340

about the size and composition of the connected components.341

These enhanced barcodes, that we call “colored barcodes”, show342

promising results for graph visualization.343

We draw the reader’s attention to the fact that a close connec- 344

tion can be established between the persistence barcodes offered 345

by TDA and certain popular visualization techniques. In partic- 346

ular, the persistence barcodes of (ordinary) PH can be deduced 347

from the merge tree of the data, and that of zigzag PH from its 348

tracking graph [37], [66]. In particular, the barcode graph [18] or 349

formigram [30], [31], a handy tool of TDA, can be understood 350

as a tracking graph. This connection is studied in further detail 351

in Section V-B. Similarly, the visualization proposed in this 352

paper (Fig. 9(A)), which incorporates additional information 353

into the persistence barcodes, is related to the idea of nested 354

tracking visualization [38], [39]. Both approaches draw flows 355

between adjacent timestamps to represent events like merges 356

and splits (in our case, triggered by user interaction). This last 357

connection, however, only concerns visual representation, since 358

these tools are designed to handle different information (nested 359

components vs. disjoint components). Section V-B discusses our 360

design decisions and explains in more detail why nested tracking 361

visualizations are not applicable in our case. 362

C. Zigzag Persistent Homology 363

We now succinctly introduce the topological tools used in this 364

paper, and refer the reader to [14] for a thorough presentation. 365

Persistence modules: Zigzag persistent homology, introduced 366

in [11], is based on the notion of simplicial homology. Given an 367

integer i ≥ 0, the ith homology functor Hi is an operator that 368

takes as input a graph G, and returns a vector space, denoted 369

Hi(G), which contains topological information about G. As 370

already discussed, we will only consider H0(G), the group of 371

connected components, since it already enables a rich analysis 372

of the graph’s structure. It is a vector space whose dimension is 373

equal to the number of connected components of G. 374

To define a zigzag PH, one has to first build a zigzag fil- 375

tration, that is, a sequence of graphs, such that for each pair 376

of consecutive graphs, one of them is included in the other. In 377

order to build such a filtration, consider the sequence of graphs 378

{Gk}Mk=0 defined in the previous section, using the partition 379

or sliding-window timeslicing. By considering the union graph 380

Gk ∪Gk+1 for all the pairs of consecutive graphs, one obtains 381

a zigzag filtration 382

G0 ↪→ G0 ∪G1 ←↩ G1 ↪→ G1 ∪G2 ←↩ G2 ↪→ . . .

In this filtration, one is able to track the evolution of the con- 383

nected components: how they merge, split, appear or disappear. 384

By applying the H0-homology to this filtration, the graphs 385

are transformed into vector spaces, and the inclusions into linear 386

maps: 387

H0(G0)→ H0(G0 ∪G1)← H0(G1)

→ H0(G1 ∪G2)← H0(G2)→ . . .

This sequence forms a zigzag persistence module, an algebraic 388

structure that condenses all the information concerning the 389

evolution of the connected components. For instance, one reads 390

directly from these maps whether a connected component splits 391

or is preserved; similarly, one reads whether two connected 392

components merge. 393
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Fig. 2. Barcodes associated with a temporal graph at resolution 1 and 2. Each
horizontal bar refers to a connected component throughout time.

Barcodes: To each persistence module is attached a persis-394

tence barcode, denoted B. It is a collection of intervals [b, d],395

called bars. They are interpreted as follows. For each timestamp396

k, the number of bars present at this time is equal to the number397

of connected components in the graph Gk. Moreover, we can398

see how these connected components evolve: To a bar [b, d]399

corresponds a connected component of the graph born at time400

b (either because new points appeared in the graph, or because401

an existing component split in two) and died at time d (either402

because the points that compose it disappeared, or because it403

merged with another component). The barcode is the main object404

of TDA, and can be understood as a visual representation of405

persistence modules.406

As an example, we give in Fig. 2 the persistence barcodes as-407

sociated with a temporal graph at resolutions 1 and 2, as in Fig. 1.408

Let us analyze the first barcode. It contains a long bar [0,5],409

indicating that there is a connected component that persists all410

along the filtration. We may think of it as representing the nodes411

colored in orange, or red. Moreover, there are three smaller bars,412

depicting connected components that survive for a shorter time:413

one bar [0,2] represents a component that merges with another414

(the red nodes with the orange nodes), another bar [0,2] repre-415

sents a component that disappears (the blue nodes) and reappears416

at t = 5. Besides, the second barcode of Fig. 2 contains only417

three bars. Indeed, in the corresponding filtration, the blue nodes418

are always present, resulting in a long bar [0,5] in the barcode.419

It should be pointed out that the barcode does not allow420

one to identify directly which connected components the bars421

represent. In certain cases, in the presence of many bars, for422

instance, this task can be difficult to perform visually. One part423

of our work consisted in defining an improved version of the424

barcode, called the colored barcode, which allows us to fix this425

problem (see Section V-A).426

Bottleneck distance: Another fundamental feature of TDA is427

the possibility of comparing two persistence barcodes, through428

the notion of bottleneck distance. In a few words, this distance429

seeks a pairing between the bars of the barcodes and computes430

the largest distance between a bar in the first barcode and431

one in the second. The exact definition is given in our supp.432

material (Section A). With respect to the bottleneck distance,433

two barcodes are close if the large bars of one can be matched434

Fig. 3. A pairing between the barcodes of Fig. 2. We outline in red the most
distant paired bars (distance 3), causing the bottleneck distance.

with the large bars of the other, the short bars being forgotten. 435

Fig. 3 shows a pairing between the barcodes in Fig. 2. The most 436

distant bars in this pairing are the two bottom ones, [0,2] and 437

[0,5]. The distance between these bars is 3, which is also the 438

bottleneck distance, denoted dB(B,B′). 439

The bottleneck distance lies at the core of our method and 440

will be used as a means to select resolutions in Section IV. 441

Namely, we will compare the temporal graphs coming from 442

two different resolutions via the bottleneck distance between the 443

persistence barcodes coming from their zigzag filtrations. This 444

distance computes the global topological agreement between 445

these temporal graphs, allowing us to determine whether they are 446

similar or not, just as in the context of abrupt change detection. In 447

addition, the bottleneck distance offers two advantages. First, it 448

allows for a theoretical treatment: we will study in Section IV-B 449

what values of distance are to be expected, and when they 450

indicate a relevant change. Secondly, and as a consequence 451

of its definition, the bottleneck distance is always caused by 452

a pair of bars or a bar alone. From a practical point of view, 453

one can identify which nodes of the graph are responsible 454

for the topological difference between two barcodes. Based on 455

this observation, we will describe an explainability pipeline in 456

Section IX. 457

III. DESIGN TASKS AND WORKFLOW 458

Design tasks: Besides suggesting temporal resolutions, we 459

seek to effectively explore the graph, and identify global and 460

local behaviors and patterns, under a given temporal resolution. 461

In that sense, we designed our visual components and interac- 462

tion to meet high-level tasks derived from low-level tasks and 463

dimensions proposed in Bach et al.’s taxonomy for temporal 464

graph exploration [4]. 465

Specifically, we combine the three task dimensions described 466

in this taxonomy: temporal/when (easy identification and reach- 467

ing of specific time steps); topological/where (easy identifica- 468

tion, situation, and tracking of elements with properties of inter- 469

est); and behavioral/what (easy understanding of the behaviors 470

and changes that affect elements of interest). These dimensions 471

help generate the following tasks, which should be satisfied 472

during the graph analysis under any temporal resolution. 473

T1: Analyze particular groups of elements (entire network, 474

connected components, or nodes) in terms of identification, 475

situation, and inspection at a given time of interest. 476

T2: Analyze the temporal evolution of particular groups of 477

elements, identifying, e.g., the addition or deletion of elements 478

and abrupt increases or decreases of an element property (re- 479

ferred to as peak or valley events in Ahn et al.’s taxonomy [1]). 480

T3: Identify and compare structural changes that occur at 481

particular times of interest. In addition to the when, where, and 482
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Fig. 4. ZigzagNetVis workflow. (a) Users input a temporal graph and node metadata (optional). (b) We suggest resolutions using a four-step procedure. (c) Users
visualize the graph using any resolution through the colored barcode and node-link diagrams, visualizations that compose our prototype.

what dimensions from Bach et al.’s taxonomy, we further con-483

sider why and how task descriptions from Brehmer & Munzner’s484

multi-level typology of visualization tasks [10]. From the why485

point of view, our tasks enable discoveries, which include the486

generation and verification of hypotheses. To achieve that, users487

first locate groups of elements of interest (tasks T1, T2) or at488

particular times (task T3). Alternatively, they can freely explore489

the visualization to find elements/times of interest (e.g., based490

on global patterns or anomalies). Once these are found, users491

may identify, compare, and summarize elements or patterns492

(T1-T3). From the how perspective, our views will meet the tasks493

by encoding the network data and by providing manipulation494

methods such as selection, navigation, and filtering. They will495

also introduce new elements to the visualization by importing496

network data on demand.497

Workflow: As illustrated in Fig. 4(a), users first input a498

temporal graph and its node categorical metadata (optional).499

The resolution suggestion then proceeds as follows (Fig. 4(b),500

details in Section IV): we build persistence barcodes for every501

candidate resolution (predefined range of values, e.g., [1,100]);502

we compute the bottleneck distance between pairs of barcodes,503

and build a suggestion curve using the distances. Resolutions504

are then suggested based on the curve’s peaks. Finally, users505

visualize the graph under any resolution by using our proposed506

layout — the colored barcode (Section V-A) — and associated507

node-link diagrams, visualizations that compose our system508

prototype (Fig. 4(c), details in Section V-C).509

IV. TEMPORAL RESOLUTION SUGGESTION510

A. Description of the Method511

As discussed above, the choice of a resolution significantly512

impacts the analysis of a temporal graph. In practice, one wishes513

to select an “optimal” resolution. However, the problem is ill-514

posed: various resolutions may be relevant, leading to different515

analyses. To circumvent this issue, our strategy selects a collec-516

tion of resolutions, each of which reveals different behaviors of517

the temporal graph.518

Let us consider an initial set of resolutions {r0, . . . , rn}, to be519

tested, and a parameter m, the number of requested resolutions.520

Our method consists in partitioning this set into m subsets of521

consecutive resolutions,522

{ri0 = r0, . . . , ri1} , {ri1 , . . . , ri2} , . . . ,

{rim−1 , . . . , rim = rn} , (1)

Fig. 5. A suggestion curve in red, its corresponding normalized suggestion
curve in blue (for partition timeslicing), and the curve i 
→ ri in black. .

where each subset consists of resolutions for which the temporal 523

graphs exhibit similar behavior. We will quantify this similarity 524

using zigzag PH, as explained in the next paragraph. As a last 525

step, we will choose a resolution in each of these subsets — 526

for instance, the first ones, ri0 , . . . , rim−1 — therefore yielding 527

an exhaustive sample of all possible behaviors exhibited by the 528

temporal graph. 529

Our method for obtaining a partition as in (1) consists in 530

comparing each pair of consecutive resolutions ri and ri+1, 531

and in detecting abrupt changes in the corresponding temporal 532

graphs. This detection is performed using zigzag PH, as follows. 533

First, we perform timeslicing on the temporal graph G for both 534

resolutions, using partition or sliding-window, as described in 535

Section II-A. Second, we compute the corresponding persistence 536

barcodes Bi and Bi+1, as well as their bottleneck distance 537

dB(Bi,Bi+1), as described in Section II-C. Gathering all the 538

bottleneck distances yields a sequence 539

dB (B0,B1) , dB (B1,B2) , . . . , dB (Bn−1,Bn) ,

which we represent as a curve, drawn in red in Fig. 5. We refer 540

to it as the suggestion curve. 541

On the suggestion curve, peaks correspond to consecutive 542

resolutions for which the associated barcodes are significantly 543

different, which we interpret as structural topological changes in 544

the temporal graphs. Finally, we identify the peaks of this curve 545

and use them as separators to obtain the partition of (1). We give 546

further explanations in the next section. 547

In a nutshell, our methodology employs the bottleneck dis- 548

tance between consecutive resolutions as a feature to perform 549

abrupt change detection. While change detection based on fea- 550

tures is common in temporal graph analysis (see, e.g., [3]), 551

incorporating PH offers several advantages. First, thanks to the 552

high interpretability of PH, we can give a heuristic analysis in 553

Section IV-B, already yielding important insights. Moreover, as 554

studied further in the supplementary material, the bottleneck 555

distance appears to be a stable and relevant quantity, gathering 556

information from various other features of the literature. 557
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B. Timestamps Shifts and Structural Changes558

In the previous section, we have built the suggestion curve559

i 
→ dB(Bi,Bi+1). In order to identify relevant peaks of this560

curve, we need to give some comments regarding the values it561

can take.562

Partition timeslicing: Let us first consider that we have chosen563

the partition timeslicing. By going from resolution ri to ri+1, one564

alters the timestamps: a timestamp for the first resolution will565

be at a distance at most ri+1/2 of a timestamp for the second566

one. Consequently, we expect that the bars of the persistence567

barcode will be displaced by a distance of at most ri+1/2. This568

interpretation leads us to distinguish two values of the bottleneck569

distance.570
� If dB(Bi,Bi+1) ≤ ri+1/2, the distance is merely caused571

by artificial changes coming from the modification of the572

timestamps’ values. We call it timestamps shift.573
� If dB(Bi,Bi+1) > ri+1/2, the distance is no longer just574

caused by the displacement of the timestamps: we consider575

that the temporal graph has undergone a structural change.576

In order to estimate the structural changes only, we must detect577

the values of the suggestion curve that exceed ri+1/2. In other578

words, we seek the positive values of the normalized suggestion579

curve:580

i 
−→ (dB(Bi,Bi+1)− ri+1/2)
+

where (·)+ denotes the positive part of a real number. This curve581

is represented in Fig. 5. In this example, we would detect the582

resolutions r2 and r7 as values that cause structural changes583

since they are the first resolutions after the peaks occurring at r1584

and r6.585

Fig. 2 provides another example. Going from resolution586

ri = 1 to ri+1 = 2, we have seen previously that the bottleneck587

distance is equal to 3, greater than ri+1/2 = 1, hence we observe588

a structural change. It is caused by the two blue bars merging589

together. If we had considered only the red and yellow bars,590

we would have observed a bottleneck distance of 2, i.e., a591

timestamps shift.592

Sliding-window timescling: We now turn to the case of593

sliding-window timeslicing. By going from resolution ri to594

ri+1, the activation windows of the edges are only altered595

by a value (ri+1 − ri)/2. Consequently, we expect that the596

bars of the barcode will be displaced by a distance of at597

most (ri+1 − ri)/2. This leads us to define a timestamps598

shift if dB(Bi,Bi+1) ≤ (ri+1 − ri)/2, and structural change599

if dB(Bi,Bi+1) > (ri+1 − ri)/2. Accordingly, we define the600

normalized suggestion curve as601

i 
−→ (dB(Bi,Bi+1)− (ri+1 − ri)/2)
+.

As before, we identify structural changes through its positive602

values.603

In practice, users can select the preferred timeslicing method604

prior to applying the resolution suggestion technique. However,605

the results obtained for partition or sliding-window may be606

different. In the case of partition, a particularly inconvenient607

phenomenon occurs. Two bars of the barcode might merge608

between ri and ri+1, provoking a structural change, and then609

split between ri+1 and ri+2, again provoking a structural change. 610

We call this phenomenon instability, and we explain the situation 611

in more detail in our supp. material (Section B.1). Consequently, 612

we recommend that users use sliding-window timeslicing, and 613

we make this choice in the rest of this article, except when stated 614

otherwise. 615

Peak detection: In real-life examples, the normalized sugges- 616

tion curve may contain many positive values. However, return- 617

ing all the corresponding resolutions to the user would not be 618

relevant. Instead, we choose to return only the most prominent 619

peaks of the curve. In practice, prominence is computed using 620

the packagesignal ofscipy. We return onlym = 5maxima, 621

five being an arbitrary value that we found suitable. We will give 622

concrete outputs of our algorithm on eight temporal graphs in 623

Section IX. 624

Other distances: In TDA, one chooses a distance according to 625

the context: while the bottleneck distance calculates the maximal 626

discrepancy between two barcodes, the Wasserstein distance 627

incorporates all perturbations. The latter option is of interest, for 628

instance, when low-persisting features matter [14]. In contrast, 629

our work aims to detect structural changes, which are evidenced 630

by the perturbation of a single bar of the barcode. Therefore, 631

the bottleneck distance appears as a natural choice (see, for 632

instance, Fig. 2). This observation is supported by Section C.2.4 633

of our supp. material, where it is shown that the Wasserstein 634

distance leads to less interpretable results. In the same vein, one 635

could use, instead of the bottleneck distance, any feature that 636

quantifies the proximity between two temporal graphs. To this 637

end, many quantities exist, such as those presented in Section 638

C.2.3 of our supplementary material (e.g., mean degree, density, 639

or burstiness). However, they all appear to either lack stability 640

or provide limited information. Our experimental study shows 641

that the bottleneck distance acts as a relevant trade-off between 642

stability and information, “incorporating” several popular fea- 643

tures. 644

V. VISUALIZATION 645

A. Colored Barcode Layout 646

In practice, the barcodes of TDA may not contain enough 647

information: one is not able to identify which nodes are part 648

of which bar. Indeed, the barcode is built from the homology 649

groups H0(Gk) of the graphs, where the information about the 650

nodes has been lost. A contribution of our work is to adapt and 651

implement an algorithm that identifies the nodes that compose 652

each bar. 653

Nodes identification: Consider a temporal graph, the sequence 654

of graphs {Gk}Mk=0 obtained by timeslicing, and theH0-barcode 655

B of its zigzag filtration. We wish to find, for each bar I ∈ B 656

and each timestamp k ∈ I , a connected component CI
k such that 657

� for each timestamp k, if Bk denotes the set of bars living 658

at time k, then the set {CI
k | I ∈ Bk} is a partition of the 659

set of nodes of Gk, 660
� for each bar I ∈ B and each k ∈ I such that k + 1 ∈ I , 661

we have CI
k ∩ CI

k+1 
= ∅. 662

The first point guarantees that we do not attribute the same 663

node to two bars at the same timestamp, and the second point 664
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Fig. 6. Colored barcodes corresponding to the barcodes of Fig. 2. Vertical
arrows depict component merging.

that, within a bar, we choose a sequence of connected compo-665

nents that are connected one to another. Such a choice is possible666

as a consequence of previous work, which is detailed below.667

Once the node identification has been done, this information668

can be incorporated into the persistence barcode. By attributing669

to each node or cluster of nodes a color (representing, e.g., node670

metadata information), we paint the bars in accordance with the671

nodes it contains. We also vary the height of the bars to indicate672

the number of nodes. We call this representation the colored673

barcode. In case it is not possible to assign different colors to674

nodes (e.g., when there are no node metadata), we use a single675

color and only consider the variation of the heights of the bars.676

We give in Fig. 6 two examples of colored barcodes, where677

the nodes are divided into three clusters: red, orange, and blue.678

They correspond to the (non-colored) barcodes of Fig. 2. On the679

first colored barcode (Fig. 6(top)), one reads that a connected680

component persists throughout the filtration, initially composed681

of orange nodes and later receiving the participation of red nodes.682

One can also visualize the connected component formed by the683

blue nodes, which disappears and reappears at t = 5.684

The choice of nodes composing each bar is not unique. For685

instance, on the first barcode of Fig. 6, the long bar starts with686

only orange nodes, until t = 3, where red nodes connect. In this687

example, one could have chosen to start this long bar with red688

nodes instead. The analysis of the colored barcode, however, is689

independent of this choice. The user must keep in mind that,690

when two connected components merge, only one of the two691

has been arbitrarily chosen to appear at the beginning of the692

corresponding bar.693

Algorithm: We now turn to the implementation of nodes694

identification, based on the work of Dey and Hou [18]. As695

described in the article, there exists an intermediate construction696

between the zigzag filtration and the persistence barcode, called697

the barcode graph. It is built recursively by studying how the698

temporal graph {Gk}Mk=0 evolves: creating, removing, merging,699

or splitting connecting components. Formally, each node of the700

barcode graph is associated with a connected component of Gk701

at a certain time k. Moreover, an edge is added between two702

components at times k and k + 1 if they share a node (see Fig. 7).703

Fig. 7. On top of a zigzag filtration (top) is built the barcode graph (middle).
By keeping the nodes’ information, an adaptation of [18, Algorithm 1] enables
us to compute the colored barcode (bottom).

We draw the reader’s attention to the fact that the barcode graph 704

is a tracking graph (see Section II-B). 705

Algorithm 1 of the aforementioned article allows one to 706

deduce, from the barcode graph, the persistence barcode of 707

the zigzag filtration. To do so, the authors recursively build the 708

barcode forest, a complementary construction. For the most part 709

of the algorithm, when iterating through the filtration, five events 710

may happen: ENTRANCE, DEPARTURE, NO-EVENT, MERGE and 711

SPLIT. They respectively represent that a node entered the fil- 712

tration, that a node left the filtration, that an edge entered or 713

left without changing the topology of the graph, that an edge 714

entered the filtration provoking two connected components to 715

merge, or that an edge left the filtration provoking a connected 716

component to split in two. Only DEPARTURE and MERGE provoke 717

the appearance of a new bar. 718

In our context, since we wish to identify the nodes that 719

compose the bars, we incorporate a further step in this procedure. 720

During the event DEPARTURE (as the dashed node of Fig. 7), we 721

simply collect the connected components written on the path, 722

and add this information to the bar of the barcode. For MERGE 723

(as the dashed edges of Fig. 7), there are two potential paths; we 724

choose one arbitrarily, associate the new bar with the connected 725

components written on it, and remove these components from 726

the graph. 727

Note that the latter choice is not unique as the “elder rule” 728

holds for ordinary PH, but not in the zigzag context. For instance, 729

if the filtration consists of one connected component, that splits 730

in two (at time t1) and then merges (at time t2), then the barcode 731

will consist of two bars, one bar being [t1, t2]. However, two 732

choices of identification are possible for this bar, and none is 733

canonical. In practice, when choosing a path to remove, we 734

remove the one that starts with the least number of nodes. This 735

allows for maintaining homogeneity within the bars; that is, bars 736

containing many nodes will continue to have many nodes. 737

One final detail should be noted. The original algorithm takes 738

as input a zigzag filtration such that two consecutive graphs 739

are obtained one from the other by adding or removing a single 740

node or edge. However, partition or sliding-window timeslicings 741

may yield filtrations where several nodes or edges are added 742

or removed at the same time. Consequently, we must apply a 743
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pre-processing step to assign each event a unique time. Once744

the algorithm has been performed, we go back to the initial745

timestamps.746

B. Design Decisions747

In practice, our colored barcode is a timeline visualization that748

can be thought of as a series of stacked area charts, each referring749

to a connected component and its node members throughout time750

(Fig. 9(A)). As mentioned above, the color and height indicate751

the label (node metadata) and number of nodes, respectively.752

Alternative designs: We have considered alternative design753

choices before proposing this layout. We decided to use a time-754

line visualization instead of animations to better meet analyses755

that rely on multiple and often distant timestamps (tasks T2,756

T3), complying with [5]. We then studied the suitability of757

existing timeline visualizations for our context. An option would758

be a visualization based on tracking graphs [34], [37], [66].759

In particular, LargeNetVis’s Global View [34] is a grid-based760

layout where rows and columns represent respectively network761

communities and timeslices. In this view, communities are en-762

coded as circles with varying sizes, and their temporal evolu-763

tion is depicted through links connecting communities from764

consecutive timeslices. Although we could adapt it to encode765

connected components, it would still not provide immediate in-766

formation about components’ node members. The identification767

and tracking of the members would also not be immediate with768

other visualizations, for instance, MSV [62], PAOH [60], and769

TAM [34].770

We have also considered nested tracking graph visualiza-771

tions [38], [39], but we opted for a different approach due to772

their inherent limitations in our specific context, particularly773

those concerning visual scalability, in terms of the number of774

timestamps, and the intrinsic components’ hierarchy they con-775

sider. First, nested tracking graphs depict the graph evolution by776

representing events (i.e., merges and splits) through horizontal777

flows drawn between uniformly spaced timestamps. While our778

visualization also enables the analysis of these events upon in-779

teraction, our primary focus lies on depicting the graph structure780

at each timestamp and the most salient connected components,781

namely the longest bars throughout time. We, therefore, provide782

a more scalable solution for our case by employing vertical flows783

alongside timestamps that are positioned one right after the other.784

As an example, while Figs. 9 and 10 illustrate our layout for a785

graph with 1,555 timestamps, all visual analyses from [38], [39]786

consider a maximum of 100 timestamps.787

Secondly, nested tracking graphs leverage hierarchical re-788

lationships coming from superlevel sets to derive component789

visibility, which can potentially lead to occlusions and impair790

the identification of patterns that would be crucial to our context791

(e.g., the number of nodes in a given component or its life-cycle).792

Conversely, we consider graphs with components without a793

hierarchical relationship (disjoint). Stacking them instead of794

nesting allows for immediate and effortless recognition of in-795

dividual components and their attributes. Overall, we consider796

our colored barcode layout to be a better solution for our tasks797

and goals. It is suitable for graphs with many timestamps,798

emphasizes structural clarity, and enables efficient identification 799

and exploration of key connected components and timestamps. 800

Bars’ positioning: We use two representations for the bars’ 801

positioning in our colored barcode. The first consists of fixing 802

the bars’ bottom ordinate and distributing them upwards only 803

(see Fig. 9) — we call this approach “bottom-based ordering”. 804

Inspired by well-established cluster positioning on Sankey- 805

and nested graph visualizations (e.g., [38], [39]), our second 806

representation considers centered bars whose height varies 807

uniformly up and down (see Fig. 10) — we call it “center-based 808

ordering”. In both cases, the bars are arranged in such a way as 809

to reduce the space they occupy in the interface and the lengths 810

of the vertical flows. 811

C. System Prototype 812

We now describe the interface and interactions that compose 813

the prototype of our ZigzagNetVis system (see a screenshot in 814

Fig. 9), a web-based visual analytics tool that incorporates all 815

steps of our workflow and was used by our user study participants 816

(Section VIII). 817

When first loaded, the system automatically opens a menu 818

through which it is possible to input a network and node cate- 819

gorical metadata (optional). The system then suggests temporal 820

resolutions for the inputted network following the procedure de- 821

scribed in Section IV. To help users choose among the suggested 822

resolutions, they can ask for quantitative network measures (or 823

features). For each resolution, the system will display values 824

for burstiness [53], average lifetime of edges [53], normalized 825

stability [15] and the inverse of the normalized fidelity — the 826

original fidelity [15] gives us a distance measurement and we use 827

the similarity counterpart. In our case, a higher value indicates 828

greater faithfulness of the network under the selected resolution 829

to the original network (r = 1). After choosing a resolution, 830

users can filter out bars (i.e., connected components) with less 831

than x node or with duration less than y timestamps, x and y 832

being user-defined. We provide a visual comparison of different 833

filtering parameters in our supp. material (Section C.1). 834

Once the network, temporal resolution, and the other pa- 835

rameter values are chosen, the system exhibits its first and 836

main view (Fig. 9(a)), which contains the colored barcode and 837

appears with maximized height and width, i.e., also occupying 838

the screen space on Fig. 9(c-e). This view adopts as default the 839

bottom-based component ordering, but the user is free to change 840

it at any time (Fig. 9(h)). Besides zoom in/out and pan, users can 841

select specific connected components or bars representing nodes 842

that share the same label (Fig. 9(g)). In this way, it is possible to 843

analyze their behavior at particular timestamps (tasks T1, T3) 844

and evolution throughout time (task T2). Nodes sharing the same 845

label can be selected in the layout by hovering over the label of 846

interest in the color legend or the bar with the color associated 847

with that label. Likewise, a connected component can be selected 848

by hovering over any of its bars (Fig. 9(A)). It is also possible 849

to persist the current selection (left-click) and select multiple 850

labels (CTRL + left-click). 851

Two behaviors are expected when marking the checkbox “See 852

flows under interaction” (Fig. 9(g)) and hovering over any bar 853
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Fig. 8. Toy example showing the behaviors when marking the checkbox “See
flows under interaction” and hovering over a bar: (left) if selecting by label, the
system tracks same label nodes throughout time; (right) if selecting by conn.
component, the system shows merges/splits in the selected component.

of a component: (i) if selecting by label (see Fig. 9(g) again), the854

system enables tracking the nodes with that (or those) label(s)855

throughout the connected components over time, as illustrated856

in Fig. 8(left); (ii) if selecting by connected component, the857

system shows the events that connect that component to others858

over time through vertical flows that indicate merges and splits859

(Fig. 8(right)).860

After finding a potentially relevant timestamp or interval for861

analysis, the user double-clicks near it and the system opens862

three node-link diagrams as presented in Fig. 9(c-e), one show-863

ing the network structure at the timestamp of interest (referred864

to as t(2), see Fig. 9(d)) and two others, by default, for t(2)∓ 10865

timestamps (referred to as t(1) and t(3), see Fig. 9(c,e)). Times-866

tamp markers are inserted in the colored barcode to highlight867

the three timestamps whose node-link diagrams are opened868

(Fig. 9(b)).869

Users can freely change the three timestamps being analyzed870

— note, e.g., the values for t(1), t(2), and t(3) in Fig. 9. This871

way, they can analyze the structure of groups of elements at872

different granularity levels (from the entire network to indi-873

vidual nodes) for any timestamp (task T1), as well as identify874

and compare structures and temporal behaviors by analyzing875

multiple node-link diagrams (tasks T2, T3). There are two ways876

for the user to reach a new timestamp of interest. If the user877

knows a priori which timestamp is relevant for analysis, they can878

simply type the new timestamp value in the node-link diagram879

area to update it; the system then repositions the corresponding880

timestamp marker accordingly. However, if the user is interested881

in analyzing a timestamp or interval that caught their attention882

because of an unexpected behavior found on the colored barcode,883

they can drag and drop one or more timestamp markers to that884

timestamp or interval; the system then updates the node-link885

diagram(s) accordingly.886

Node-link diagram: Given a selected timestamp of interest887

tk, our node-link diagram shows all nodes and edges active at tk888

using a spring-force node positioning. Nodes are colored using889

the same color scale as in the colored barcode. In addition, the890

system also shows a tooltip with node id and label whenever891

a node is hovered over, as illustrated in Fig. 9(f). The user892

can expand one or more node-link diagrams (button insert893

graphic here) and drag/drop their maximized versions, e.g.,894

to put them side-by-side and optimize comparisons. Depending895

on the type of selection (recall Fig. 9(g)), a click on a node x in896

a diagram (expanded or not) selects all nodes that contain the897

same label as x or all nodes that belong to the same connected898

component as x (T1). To help users compare structures and 899

temporal behaviors (T2, T3), all node-link diagrams (expanded 900

and non-expanded) are coordinated with each other and with 901

the colored barcode: groups of nodes selected in one of them are 902

automatically selected in the others (see, e.g., the non-selected 903

connected component in Fig. 9(a,d), t(2) = 710). 904

Design decisions: Besides the decisions made on the col- 905

ored barcode (recall Section V-B), we also studied alternative 906

approaches before choosing static node-link diagrams to explore 907

the network structure at particular times. First, we considered 908

using animations to show the evolution of the network during 909

the time interval selected through the timestamp markers. We 910

gave up this idea because animations have limitations on tasks 911

involving multiple and distant timestamps [5]. After opting 912

for “static” visualizations, we considered node-link diagrams 913

and adjacency matrix-based visualizations [6]. We chose the 914

former as it would be easier to identify connected components 915

using the diagram, especially when adopting spring-force node 916

positioning. Finally, we decided to enable the analysis of three 917

timestamps (three node-link diagrams at once) based on the 918

intuitive notion of past, present, and future. 919

As mentioned, our system prototype associates different col- 920

ors to nodes (or bars) with different labels when this metadata in- 921

formation is available. Color-blind users can use a color scheme 922

that is safe from color blindness. Our prototype also provides a 923

series of features that help colorblind users in their analysis, e.g., 924

by allowing selections and by showing informative tooltips. In 925

the user study, we validated visualizations and color scheme with 926

two self-declared colorblind participants (see Section VIII-C). 927

Implementation details: We use a client-server architecture. 928

The server side was implemented in Python and uses popu- 929

lar libraries and frameworks (e.g., NetworkX, Flask, and 930

Dionysus2). We used the D3 library in our views. A demo 931

version of the system, used by our user study participants and 932

already including suggestions, is available at https://github.com/ 933

raphaeltinarrage/ZigzagNetVis. 934

Computational complexity: The overall ZigzagNetVis process 935

can be divided into three steps: open the dataset (1), compute 936

the suggestion curve (2), and compute the colored barcode for 937

one resolution (3). Let m be the number of pairs (edge, time) 938

in the temporal graph, and let n be the number of resolutions 939

tested. Step 1 consists in reorganizing these pairs in a dictionary, 940

and creating a list of unique edges, resulting in a computational 941

complexity of O(m). In Step 2, we create n zigzag filtrations, 942

compute their H0-homology barcode, and then compute the 943

consecutive bottleneck distances. The respective complexities 944

areO(nm),O(nmα(m)), andO(nm1.5), whereα is the inverse 945

Ackermann’s function (approximately constant in practice) [18]. 946

Last, Step 3 consists of one computation of zigzag persistence, 947

which therefore has a computational complexity of O(nα(n)). 948

In general, the complexity of the process is O(nm1.5). We 949

should mention, however, that our personal implementation of 950

the persistence algorithm does not reach the complexity men- 951

tioned above and can potentially yield longer execution times. 952

In our supp. material (Section C.3), we give the running times 953

observed in practice for eight temporal graphs. 954

https://github.com/raphaeltinarrage/ZigzagNetVis
https://github.com/raphaeltinarrage/ZigzagNetVis
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Fig. 9. ZigzagNetVis system prototype, an interactive and web-based system with linked views designed to assist the analysis of temporal graphs by highlighting
connected components’ structure and evolution. (a) Colored barcode with bottom-based ordering that highlights the longest connected component in the graph —
note that (i), (ii), and (iii) represent time intervals with few connected components compared to others. (b) Timestamp markers indicating the three timestamps being
depicted by (c-e) the three node-link diagrams. (f) Tooltip showing extra information. (g) Users can select groups of nodes by label or by connected component.
(h) Users can choose between two available component positioning strategies.

VI. DATASETS955

Our usage scenario and user study explore the first day of956

data from two real-world and face-to-face temporal graphs col-957

lected in educational environments, the Primary School [23]958

and the High School [40] networks. We have chosen these959

graphs as they have been extensively analyzed in the con-960

text of temporal graph visualization [25], [34], [47], [63],961

[67], [68] and because they contain relevant node metadata962

information.963

The first day of the Primary School network [23] contains964

236 nodes (students and teachers from the first to the fifth965

grade, each having classes A and B) and 60,623 edges, which966

represent face-to-face interactions. There are 1,555 timestamps967

in the original resolution (r = 1), each comprising a 20-sec968

interval. Data were collected from 8:45 am to 5:20 pm. There969

is a lunch break from 12pm to 2pm and two smaller breaks970

(20-25 min), one in the morning (around 10:30am) and one in971

the afternoon (around 3:30pm). Each of the 10 school classes972

has an assigned teacher. For convenience, we will refer to each973

class using simple terms, for example, 1B to refer to “first grade,974

class B”.975

The High School network [40] contains face-to-face inter-976

actions between students from nine classes related to different977

subjects: chemistry and physics (classes PC and PC1), mathe-978

matics and physics (classes MP, MP1, and MP2), engineering979

(class PSI), and biology (classes 2BIO1, 2BIO2, and 2BIO3).980

The first day contains 312 nodes and 28,780 edges distributed981

in 899 timestamps (a 20-sec interval each) when adopting the982

original resolution.983

VII. USAGE SCENARIO 984

We demonstrate the suitability of a suggested resolution for 985

analyzing the Primary School and the usefulness of our colored 986

barcode and system to assist in this analysis. We also show 987

in Section C.4 of our supplementary material that the patterns 988

found using ZigzagNetVis are comparable to those identified 989

using LargeNetVis [34], a state-of-the-art approach. 990

ZigzagNetVis suggested the resolutions r = 8, 18, 76, 154, 991

and 282 for the Primary School. Fig. 9(A) shows our colored 992

barcode for the median resolution r = 76, empirically chosen 993

among the suggested ones due to its interesting patterns. This vi- 994

sualization was produced after (i) filtering out components with 995

less than 10 nodes and 10 timestamps and (ii) selecting the com- 996

ponent with the longest duration. Disregarding the component 997

selection (we will discuss it later on), we can already enumerate 998

some patterns and interesting behaviors in the graph data. First, 999

we see that most of the non-selected components (i.e., compo- 1000

nents with low opacity in Fig. 9(a)) are composed of students 1001

from a single class, along with their teacher (tasks T1, T2). This 1002

is expected since these students were having classes in their 1003

respective classrooms. This pattern can also be seen in Fig. 10, 1004

which shows the same network and resolution using a different 1005

ordering. 1006

There are also time intervals with few connected components 1007

compared to others, possibly indicating school breaks (one in 1008

the morning, lunch break, and another in the afternoon — see 1009

Fig. 9(i,ii,iii), respectively) (tasks T2, T3). The first time we 1010

have a single component in the graph delineates the beginning 1011

of lunch break (see the selected component near timestamp 1012

t = 580 in Fig. 9(a)) (task T1). As the students go home for 1013
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Fig. 10. Colored barcode with center-based ordering for the Primary School
and the suggested resolution 76.

lunch [23], we observe a decrease in the number of nodes in1014

the graph (see just after timestamp t = 600) (tasks T2, T3).1015

During lunch, this component is eventually decomposed into1016

two parts, as illustrated in Fig. 9(A,D)(t = 710 ), one contain-1017

ing students from classes 1A, 1B, 2A, 2B, 3A and the other1018

containing a few other students from 3A and 3B, 4A, 4B, 5A,1019

5B (task T1). This division is explained by the location of1020

the students that stay at the school: some children stay in the1021

cafeteria while others stay at the courtyard [23]; these groups1022

encounter each other when they switch places, leading to a1023

single component again (see Fig. 9(a,e)(t = 800)). Note also1024

the absence of teachers during the lunch break: they are present1025

at first (see Fig. 9(a,c,f)(t = 640)), but they leave (there are no1026

teachers in t = 710 and t = 800, for example) and come back1027

near the end of the lunch break (task T3), when we start seeing1028

many connected components in the graph again (task T2).1029

VIII. USER STUDY1030

A. Participants and Experiment Setup1031

The experiment recruited 27 participants, including under-1032

graduates (9), Master’s students (6), Ph.D.s candidates (7),1033

postdocs (2) and professors (1). According to their self-reports,1034

4 participants had advanced knowledge in graphs, 4 in visualiza-1035

tion, 2 in TDA, and 3 in Informatics in Education. We conducted1036

the experiment using the think-aloud protocol, a common tech-1037

nique to obtain a more accurate perception of the participants’1038

thoughts [12]. To avoid participants being influenced by our1039

presence and not mentioning negative aspects, we explicitly1040

asked them to highlight our approach’s limitations. Before the1041

experiment, we conducted a pilot study with two participants1042

not included in the final analysis.1043

B. Questionnaire1044

First, the participants were presented with a 7-minute video1045

tutorial that introduced the concepts of graph, temporal reso-1046

lution, and connected components, and explained the proposed1047

layout and system functionalities. The questionnaire was divided1048

into four main sections: (i) background and experience; (ii)1049

a hands-on experience with defined tasks; (iii) nine questions1050

that address the Primary and High School networks; and (iv)1051

Likert-scale questions to collect the participants’ feedback.1052

The questions were designed to evaluate layout perception, 1053

test functionalities, find patterns, and freely explore the given 1054

networks. First, we assessed comprehension of the basic func- 1055

tionalities through hands-on experience, where we asked the par- 1056

ticipants to open the Primary School network using the default 1057

configuration. Then, we asked them to verbally describe the defi- 1058

nitions of some concepts necessary to understand the experiment 1059

(e.g., connected components and temporal resolution) and to 1060

follow a set of 12 simple tasks (ST1-ST12) to check if they were 1061

familiarized with the system’s functionalities (e.g., shortcuts 1062

and interaction features). They were also asked to validate our 1063

visualization by exploring the Primary School network with 1064

resolutions r = 76 (SQ1-SQ3) and r = 154 (SQ4-SQ6), and 1065

the High School under r = 46 (SQ7-SQ9). Due to time limita- 1066

tions, we focused on analyzing only these three resolutions, all 1067

suggested by ZigzagNetVis using sliding-window timeslicing. 1068

In addition, our focus on school networks aimed to provide 1069

participants with familiar contexts for understanding nodes and 1070

edges, which have the same meaning on both networks. 1071

The SQ1-SQ9 questions were open questions in which we 1072

guided the participants to identify specific patterns (SQ1-SQ3 1073

and SQ7-SQ8), asked them to compare the results of two 1074

resolutions (SQ4, SQ5), and encouraged them to explore the 1075

system freely (SQ6, SQ9). Finally, we evaluated the participants’ 1076

preferences for ZigzagNetVis using a series of Likert-Scale 1077

questions (LQ1-LQ10) and asked them to describe the positive 1078

and negative aspects of the system. The complete description of 1079

the questions and expected answers are available in the supp. 1080

material (Section D.1). 1081

After preliminary tests, we fixed both filters for bars in 10 1082

(recall Section V-C) to avoid receiving too many different results, 1083

which would hinder the analysis of the collected data. 1084

C. Results 1085

Hypotheses on data analysis: All participants answered at 1086

least one of the points that we expected for each open ques- 1087

tion (SQ1-SQ5, SQ7, SQ8). Also, during the experiment, we 1088

encouraged participants to raise hypotheses that could justify 1089

specific patterns considering a school environment. For instance, 1090

in question SQ1 (Primary School), we asked them to evaluate 1091

the relationship between students and teachers from classes 1092

4 A, 5 A, and 5B (which form a connected component at some 1093

point). All participants mentioned that class 4 A was far from 1094

the others. Furthermore, 62% of the participants identified that 1095

the two subgroups (4 A, 5A-5B) were linked by an edge that 1096

involved a teacher; 37% noticed that this edge actually involves 1097

two teachers. The hypotheses put forward to explain the strong 1098

interaction between classes 5 A and 5B mentioned that, since 1099

both classes belong to the fifth grade (30% remembered this 1100

information), it could be due to interdisciplinary events such as 1101

laboratory activity (22%) or group studies (14.81%). 1102

Exploratory analyses: We proposed questions where the par- 1103

ticipants could freely explore the system and identify patterns 1104

not described by other questions (SQ6, SQ9). More than 85% 1105

of the participants mentioned new patterns or anomalies in their 1106

exploratory analyses of the Primary School (SQ6), and 74% 1107

found new ones in the High School network (SQ9). Among the 1108
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Fig. 11. Four patterns (I-IV) mentioned via SQ6 (Primary School, r = 154).
The colored barcode adopts bottom-based ordering.

Fig. 12. Three patterns (I-III) mentioned via SQ9 (High School, r = 46). The
colored barcode adopts bottom-based ordering.

patterns and anomalies found, the most cited for the Primary1109

School using r = 154 were (Fig. 11): (I) merges and splits1110

between related students; (II) peaks of interaction in a short1111

time period; (III) a single connected component containing1112

all students and teachers (even though the teachers leave the1113

network at some point); and (IV) same-class students divided1114

into two connected components. Although this question was not1115

designed to compare patterns identified in different resolutions,1116

most participants tried to compare patterns visible with r = 1541117

with those from r = 76. For instance, Fig. 9(a,d) illustrates that1118

there are two connected components around timestamp 7101119

when using r = 76, which is hidden in the higher resolution1120

(see Fig. 11(III)). About that, a participant mentioned that “you1121

can clearly see how patterns vary according to the selected1122

resolution when analyzing the primary school”.1123

The participants identified three common patterns in the sec-1124

ond exploratory question (SQ9, High School). The first refers to1125

peaks of activity in the same connected component over time (see1126

Fig. 12(I)). In the High School, there are also intervals where all1127

students merge into a single and highly connected component.1128

The participants could see that these intervals correspond to1129

break periods, lunch break, or group activities. The second1130

pattern is related to a small connected component just before1131

a large peak (Fig. 12(II)). Based on the node-link diagram,1132

Fig. 13. Participants’ feedback using a Likert scale.

there were just a few connections between the students, which 1133

represented the beginning of a group activity or a break. Finally, 1134

the third pattern refers to connected components with varying 1135

lengths over time but composed of single classes (Fig. 12(III)). 1136

According to the participants, they allow one to see the class 1137

hours, but, contrary to the primary school, where the number of 1138

students per component is quite stable over time during classes 1139

(see Fig. 9), this network presents classes with non-uniform 1140

activity over time. 1141

Interactive features: We also validated the functionalities 1142

mainly used to answer representative questions. In summary, 1143

the participants preferred to move timestamp markers rather 1144

than type new timestamp values for the exploratory tasks. On 1145

average, the feature used mainly in the node-link diagrams 1146

was zoom (41.48%), which is justified by the small size of 1147

nodes and edges initially applied. Not least, the similar rate of 1148

usage involving selection by label (44.44%) and by component 1149

(41.48%) indicates that both were appreciated. Please refer to 1150

the supp. material (Section D.2) for details. 1151

Likert-scale questions and participants’ feedback: Fig. 13 1152

shows the participants’ assessments of the colored barcode’s 1153

(LQ1) and node-link diagrams’ (LQ2) quality and usefulness, 1154

their coordination and interaction (LQ3), and the system’s intu- 1155

itiveness and ease of use (LQ4), usefulness (LQ5), and response 1156

time (LQ6). There were also questions related to specific tasks, 1157

such as understanding the temporal evolution (LQ7), comparing 1158

structure at different times (LQ8) or at node level (LQ9), and 1159

analyzing the network under different resolutions (LQ10). 1160

First, considering the negative evaluations, three participants 1161

mentioned that the system was not intuitive (LQ4) because it 1162

lacked a “help” button summarizing the main functionalities. 1163

Regarding response time (LQ6), two users complained about 1164

loading time, although the system’s interactions worked satis- 1165

factorily. One of the experts added that “I can’t say about speed, 1166

for the tested datasets I agree but generally I don’t know, it 1167

depends on the network size”. At last, about the analysis under 1168

different resolutions (LQ10), two participants considered that 1169

the comparison was difficult since it depended on the memory 1170

load of the user. 1171

Besides the negative evaluations, ZigzagNetVis achieved a 1172

95% of acceptance rate for the raised criteria (LQ1-LQ10), 1173

considering the average agreement (29%) and strong agreement 1174

(66%) rates. Several participants raised positive points about the 1175

system and colored barcode, claiming that “The proposed system 1176

is simpler and more efficient in analyzing temporal networks 1177

than the other tools I know”, and “the colored barcode is great 1178
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TABLE I
SUGGESTED RESOLUTIONS FOR EIGHT DISTINCT NETWORKS

(pretty and very interesting), both for the color distinction and1179

the subtlety of increases and decreases in a bar over time”.1180

For another participant, “It is the union of both views (colored1181

barcode and node-links) that is most useful. Each alone would1182

not allow us to understand well what is happening”. At last,1183

one expert complemented that “the barcodes are very good for1184

quickly visualizing long interactions, while the node-link dia-1185

grams allow you to understand to what degree these interactions1186

are happening”.1187

It should be noted that we tested the system with two color-1188

blind participants, who validated that there were enough features1189

(such as tooltips, different color scales, and interactive color1190

legend) to perform all tasks without hindering the analyses. Fi-1191

nally, some participants suggested improvements already incor-1192

porated, such as the selection of multiple labels, improvements1193

in readability (e.g., better contrast in menus) and the mentioned1194

“help” button.1195

IX. ANALYSIS OF THE SUGGESTED RESOLUTIONS1196

This section is devoted to the analysis of the resolutions sug-1197

gested by ZigzagNetVis’ methodology. We aim to demonstrating1198

empirically that these suggestions are relevant. As mentioned in1199

Section II, few studies have tackled the problem of choosing a1200

resolution. In particular, no reference data sets are available. As1201

a means of comparison, we will use, for each of the temporal1202

graphs considered in this paper, the resolutions used in the liter-1203

ature — that we stress are mainly chosen “by hand”. However,1204

a direct comparison cannot be made. Indeed, as pointed out1205

in Section IV-A, one cannot define “optimal” resolutions, but1206

rather meaningful ranges of resolutions. Consequently, to assess1207

the quality of ZigzagNetVis’ suggested resolutions, one must1208

analyze them qualitatively by understanding the behaviors of1209

the corresponding dynamic graphs and comparing them with1210

the literature. This study will be conducted here, in particular1211

using the visual tool provided by the bottleneck distance. In our1212

supplementary material (Section C.2.3), we extend this study by1213

comparing our suggestion curves with commonly used feature1214

of temporal graphs, revealing when they coincide and when they1215

complement each other.1216

Visualization of suggested values: Table I presents the resolu-1217

tions suggested by our approach, using sliding-window timeslic-1218

ing and considering eight different graphs of varying characteris-1219

tics and sizes. The corresponding normalized suggestion curves1220

are shown in the supp. material (Section C.2.1). To construct the1221

curves for these eight temporal graphs, we used, respectively, a1222

maximal time of 2000, 2000, 2000, 20000, 1300, 1400, 3000,1223

and 1000, and resolutions up to a quarter of these values. Note 1224

that the maximal time for Primary and High Schools covers the 1225

first day, as in Section VI. 1226

Fig. 14 shows the colored barcodes for four networks in Table I 1227

to emphasize the usefulness of both the resolution suggestion 1228

method and this visualization in assisting the analysis of real- 1229

world networks. The colored barcodes exhibit the entire graphs, 1230

except for the InVS network (Fig. 14(c)), which shows only the 1231

first day of data to better present the visual pattern we want to 1232

discuss. 1233

Even though the Enron network (Fig. 14(a)) does not provide 1234

node metadata, it is easy to identify global patterns that do not 1235

rely on such information, for example, the gradual increase in 1236

the number of connections and node activity over time [29]. The 1237

increasing size of the main connected component, followed by 1238

an abrupt decrease near the end of the network, is related to 1239

important events in the context of these network data, including 1240

the CEO resignation and bankruptcy. Temporal patterns related 1241

to circadian rhythms can also be identified in face-to-face net- 1242

works, as shown in Fig. 14(b) for the Hospital network [64]. 1243

We can easily identify intervals with bursts of events (five days) 1244

followed by intervals with few or no interaction (four nights). 1245

Incorporating node metadata greatly improves network anal- 1246

ysis by allowing us to observe local patterns in the data. In the 1247

InVS network [24], for example, most connected components 1248

contain only nodes that share the same label (in this case, 1249

employees of the same department), as illustrated in Fig. 14(c). 1250

That makes sense in the context of this network, as most of 1251

the employees are of type “residents”, i.e., they interact mainly 1252

with others in their own department. This is a pattern we do 1253

not observe in the Sexual network [52] (Fig. 14(d)). Since it is 1254

a bipartite graph, all connected components will have at least 1255

one node from each label, i.e., a buyer and a seller. Note that 1256

the Sexual network is much larger than the others we have 1257

considered. Its original form (resolution 1) contains 12,157 1258

nodes, 34,060 edges, and 1,000 timestamps, each representing 1259

a 1-day interval [52]. 1260

Resolutions used in the literature: In general, studies that 1261

analyze temporal graphs use resolution directly or indirectly. 1262

Some focus on comparing different resolutions [44], [47], [58], 1263

while others select arbitrary resolutions according to the analysis 1264

needs [50], [62], [68]. For instance, some works prioritize high 1265

resolution values for global pattern identification [25], [68], 1266

while others focus on small ones and local patterns [21], [49], 1267

[62]. Note that ZigzagNetVis suggests resolutions suitable for 1268

both types of analysis (Table I). 1269

Table I summarizes our suggested resolutions and others used 1270

in literature for eight popular graphs. For the well-known Enron 1271

network [29], while some studies use the original resolution 1272

r = 1 as an arbitrary value to perform local analyses [21], 1273

[36], [62], others compare resolutions coming from a small set 1274

of arbitrary values [44], [58]. For example, Sulo et al. [58] 1275

analyze this network under resolutions r = 1, r = 5, and r = 12, 1276

highlighting the different patterns each resolution allows one to 1277

identify. According to the authors, the pattern “CEO resignation” 1278

is easily identified when adopting resolutions between 4 and 1279

7 [58]. Note that ZigzagNetVis suggested resolutions r = 6 1280
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Fig. 14. Colored barcodes with bottom-based ordering for four networks from Table I. (a) Enron with r = 6. (b) Hospital with r = 74. (c) InVS with r = 66.
(d) Sexual with r = 6. All resolutions adopted were suggested by our method (see Table I). There is no component filtering except for the Sexual network (f),
whose colored barcode shows only components with at least 10 node members and a duration of at least 10 timestamps.

(therefore included in the mentioned “good-quality” range) and1281

r = 12 (a resolution also used by the authors). The suggestion1282

of a resolution that matches exactly the one used by previous1283

studies also occurred with the Conference network (r = 30, as1284

depicted in Table I).1285

As another example, some studies mention the same circadian1286

rhythm pattern discussed in Fig. 14(b) for the Hospital network,1287

i.e., days with bursts of activity and idle nights [33], [35], [50].1288

ZigzagNetVis and these studies allow one to identify this pattern,1289

even though they use different but close resolution values. Our1290

method also suggests a resolution many times greater than those1291

used in the literature for this network (r = 352). This is probably1292

the resolution in which the idle intervals are lost. In general, our1293

approach suggests resolutions that are close to those used by the1294

related literature. In addition, it can also suggest other resolution1295

values that potentially lead to unexplored visual patterns.1296

Resolution comparison and explainability: As discussed in1297

SectionII-C, the bottleneck distance offers a clear interpretabil-1298

ity. Namely, the distance dB(B,B′) between two barcodes is1299

always caused by a pair of bars or a bar alone, that is, such1300

that the cost of this pair, or of this bar alone, is equal to the1301

distance. Consequently, highlighting these bars allows us to1302

observe precisely where the barcodes differ the most. This is1303

particularly useful for understanding the suggested resolutions1304

of ZigzagNetVis.1305

Taking into account the first day of the Primary School net-1306

work, the algorithm suggests resolution r = 8 (see Table I). The1307

resolution just before this one is r = 6, since sliding-window1308

timeslicing only accepts even values of resolutions. In order to1309

visualize what structural change has occurred between resolu-1310

tions 6 and 8, we show in Fig. 15(a,b) the corresponding colored1311

barcodes, while highlighting the pair of bars that provoked the1312

bottleneck distance. As we can see, when going from r = 6 to1313

Fig. 15. Visualization of the bottleneck distance for the first day of the Primary
School. (a-b) r = 6 and r = 8 showing only bars with height larger than 50.
Highlighted components represent the bars that differ the most between these
two resolutions, according to the bottleneck distance.

r = 8, a large bar is formed, which lasts throughout the obser- 1314

vation period. Please refer to the supp. material (Section C.2.2) 1315

for other networks. 1316

Classification of structural changes: A manual analysis of the 1317

resolutions suggested by ZigzagNetVis compels us to classify 1318

the structural changes into three categories. The first category 1319

contains the initial resolutions. We have observed, in the sugges- 1320

tion curves, the phenomenon of a chaotic start, followed by a rel- 1321

atively flat phase. These resolutions correspond to critical points 1322

indicating the formation of the first persisting connected compo- 1323

nent. A second type of easily identifiable structural change is that 1324

of the connection between days of the temporal graph. At the 1325

critical resolution connecting two consecutive days, assuming 1326

no activity is recorded during the night, the suggestion curve 1327

shows a significant peak. The last group of resolutions generally 1328

contains those that cause a persistent connected component to 1329

merge with a larger one. 1330

This classification allows, at least heuristically, to divide the 1331

range of resolutions into three intervals: a chaotic start, followed 1332
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by a range where the resolution curve only exhibits relevant1333

peaks, and at last a few values caused by the merging of the days.1334

This observation can be used when the user, through manual1335

inspection, seeks relevant resolutions to study. We stress that1336

the last case is not observed in the figures for the Primary and1337

High School networks, since we selected resolutions smaller1338

than the length of a night.1339

X. DISCUSSION AND LIMITATIONS1340

Timeslicing: ZigzagNetVis is not designed for graphs with1341

continuous real-valued timestamps as timeslicing approaches1342

fail to represent these graphs faithfully [34]. Considering graphs1343

with discrete times, we have described two uniform timeslic-1344

ing approaches that may be used with ZigzagNetVis: partition1345

and sliding-window-based. Regardless of the chosen approach,1346

the suggested resolution is a global and static value that is1347

used to represent the entire graph. In future work, we intend1348

to investigate whether non-uniform timeslicing would lead to1349

better results.1350

Visual scalability: Our colored barcode is better suited for1351

small to mid-size graphs, in terms of the number of times-1352

tamps or connected components (even though too few and large1353

components also hinder the analysis). Although we provide1354

filters and interactions that help with large networks, we intend1355

to improve our visual scalability to better meet this type of1356

network. Specifically, we plan to extend the representation to1357

deal with more timestamps and components, e.g., by collaps-1358

ing/expanding based on the graph dynamics. We also intend to1359

incorporate sampling strategies and more sophisticated filters,1360

e.g., based on structural properties such as the strength of the1361

connected components or edge weights (explicit or inferred).1362

Resolution comparison: Some participants would also like1363

to simultaneously compare suggested resolutions with each1364

other and with non-suggested ones. Although one could open1365

the system many times or perform a side-by-side comparison1366

using multiple instances of the system, we believe that incor-1367

porating such a capability into our system would enhance the1368

identification of patterns coming from different resolutions, help1369

users to understand and follow changes that regions of interest1370

suffer when varying resolutions (recall Section IX), and also1371

increase the user’s confidence in the suggestions or reveal room1372

for improvement in the suggestion procedure, e.g., by incorpo-1373

rating user feedback.1374

Zigzag persistent homology: Through the lens of homology,1375

all connected components are treated identically, regardless of1376

the number of nodes they contain. Consequently, in extreme1377

cases, a structural change in the temporal network can be1378

provoked by a single node. Since this situation might not be1379

convenient for the analysis of large networks, where relevant1380

features are commonly understood as those involving many1381

nodes, we intend to design and adopt a variation of the bottleneck1382

distance that would take into account the number of nodes.1383

Besides, our work focused on homology H0. The inclusion of1384

higher topological features, such as in [42], may contain further1385

relevant information, that we intend to add in future works.1386

Not least, we adopted in this work a simple peak detection1387

via their prominence, which is well established and easy to1388

interpret. In a follow-up study, we intend to test more sophisti- 1389

cated approaches, for example, peak detection via Z-scores, or 1390

TDA-inspired techniques based on peaks’ persistence. 1391

Running time: Table I in our supp. material shows that, in 1392

practice, the most time-consuming step of our algorithm is the 1393

computation of m persistence diagrams, m being the number of 1394

resolutions tested. To reduce this cost, we could take advantage 1395

of the fact that two consecutive resolutions should yield barcodes 1396

close to each other; an idea known as updating barcodes [19]. 1397

Although we have not investigated this aspect further, since the 1398

running times obtained empirically were satisfactory, such a 1399

technique could open the door to larger-scale graphs. 1400

Visual improvements and new features: Based on feedback 1401

from reviewers and participants, we’ve added new features to 1402

the system prototype: a center-based component positioning, 1403

merge/split visual representation, and a table with quantitative 1404

measurements for suggested resolutions. While participants did 1405

not test these features, they do not directly affect the results 1406

outlined in this paper. 1407

XI. CONCLUSION 1408

This paper presented ZigzagNetVis, a methodology that sug- 1409

gests potentially relevant temporal resolutions for graph analysis 1410

using zigzag PH, a well-established technique from TDA, and 1411

the tool system that implements it. Our methodology can be 1412

summarized as follows. First, we build persistence barcodes for 1413

candidate resolutions. Then, we compute the bottleneck distance 1414

between pairs of barcodes and build a suggestion curve based on 1415

the distance values. Finally, we suggest resolutions based on the 1416

curve’s peaks. ZigzagNetVis also incorporates a timeline-based 1417

visualization inspired by the persistence barcodes of TDA. Our 1418

visualization assists researchers and practitioners in exploring 1419

temporal graphs by highlighting the connected components’ 1420

structure and evolution. We validated ZigzagNetVis and our 1421

web-based and interactive system prototype through a usage 1422

scenario and a user study with 27 participants, who assessed its 1423

usefulness and effectiveness. 1424
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