

Employing 2D Projections for Fast Visual Exploration of Large Fiber Tracking Data

Jorge Poco Danilo Medeiros Eler Fernando Vieira Paulovich Rosane Minghim

> Eurovis 2012 Vienna - Austria

Contents

- Data Source
- Feature Space
- Fiber Visual Representation
- Linked Views
- Exploration of Large Datasets
 - Use of transparency
 - Sample-based exploration
- Comparison with Previous Approach
- Conclusions

Data Source Diffusion Tensor Imaging (DTI)

- Tensor data measuring the movement of water molecules.
- Water moves faster in the direction of fibers.
- Tracks neural fibers and, with that, the connections within the brain.
- Fiber tracts: fiber orientation followed by fiber connection
- Various methods: Streamline Fiber Tracking, Diffusion Tensor deflection, Monte-Carlo Probabilistic Tracking, Front Propagation e Diffusion Simulation-Based Fiber Tractography.

Visualization of DTI.

- 3 main categories of techniques
 Glyphs
 - Classical scalar volume visualization techniques
 - Tensor can be converted to scalars
 - Streamlines
 - Tensor can be converted to vectors

Problems

- Problems: large quantities of fibers with intricate topology.
- Unfavorable set up for direct manipulation.
- Plus: handling groups of neighboring fibers is required, and difficult.

Goals

- A real-time visual exploration approach.
- Handling of neighboring fibers.
- A fast and accurate means to interact with brain fiber data.
 - two-way linked visual representations.
- Larger fiber tract data sets.

Tool - Vispipeline

File Edit Tool

NYU[,]poly unesp^{*}

PBC dataset

- 2009 Pittsburgh Brain Competition (PBC)
 - Brain Connectivity Challenge
 - http://pbc.lrdc.pitt.edu/
- 250K fibers
 - 19k of which classified into 8 different classes

CHEN et al.'s dataset¹

- A human brain dataset
 - 1,248 fibers

Link:

http://www.cad.zju.edu.cn/home/ chenwei/interface/index.html

1. CHEN W., DING Z., ZHANG S., MACKAY-BRANDT A., CORREIA S., QU H., CROW J., TATE D., YAN Z., PENG Q.: A Novel Interface for Interactive Exploration of DTI Fibers. IEEE TVCG 15, 6 (2009), 1433–1440.

JIANU et al. 's dataset²

690 fibers

Link: <u>http://www.cs.brown.edu/~cad/</u> projects/embedvis/

2. JIANU R., DEMIRALP C., LAIDLAW D. H.: Exploring 3D DTI fiber tracts with linked 2D representations. IEEE TVCG 15, 6 (2009), 1449–56.

Features

- Spatial features
 - start point
 - end point
 - center of mass
 - Iength
- Curvature features
 - Discrete Fourier Transform (DFT)
 - 1D DFT is applied on the coordinates x, y, z of each fiber
 - We only use the magnitude (real part) of the coefficients related to high-frequency values

Feature Space Analysis: 19,000 PBC dataset

LAMP projection from <u>spatial</u> feature space Silhouette 0,5054 LAMP projection from <u>curvature</u> feature space Silhouette 0,5482 LAMP projection from <u>combined</u> feature space Silhouette 0,5494

Fiber Representation

JIANU's dataset

LSP 3D for segregation³

surface representation

3. POCO, J. ; PAULOVICH, F. V. ; ETEMADPOUR, R. ; LONG, V. T. ; ROSENTHAL, P. ; OLIVEIRA, M. C. F. ; LINSEN, L. ; MINGHIM, R. A Framework for Exploring Multidimensional Data with 3D Projections. CGF, 30, 1111-1120, 2011.

Larger Dataset: 250,000 PBC dataset Full View

Larger Dataset: 250,000 PBC dataset Full View - transparency

Larger Dataset: 250,000 PBC dataset

Exploration Based on Samples

LAMP (Local Affine Multidimensional Projection): Sample Projection from PBC 250k fibers

NYUpoly unesp^{*} 24

Sample Projection from PBC 250k

NYU[,]poly unesp*

Sample Projection from PBC dataset

NYU[,]poly unesp^{*}

Final Projection from 250,000 PBC dataset

NYU poly unesp^{*} 27

Sample Projection from 250,000 PBC dataset – Alternative exploration

NYUpoly unesp

Final Projection from 250,000 PBC dataset[®] – Alternative exploration

NYU[,]poly unesp*

Projections from Chen et al.'s dataset

2D projection from MDS technique

NYU[,]poly unesp⁴

Projections from Chen et al.'s dataset

NYUpoly unesp

Distance Plot: $R^n \ge R^2$

Distance plot for MDS technique

Distance plot for LAMP projection

Running Times

Running times (in seconds) comparing LAMP and other approaches

Dataset	PLP	PLMP	LAMP	MDS
PBC (250K)	273.07s	1.01s	7.26s	
PBC (19K)	1.01s	0.06s	0.24s	105.33s
JIANU	0.11s	0.02s	0.02s	0.13s
CHEN	0.04s	0.02s	0.01s	0.32s

250,000 fibers were not supported by MDS technique

Running Times

 Comparison of the group quality using silhouette coefficient and distinct feature spaces

Features	PLP	PLMP	LAMP	MDS
Curvature	0.6050	0.4826	0.5482	0.5354
Spatial	0.5496	0.5025	0.5054	0.5251
Both Combined	0.6040	0.6269	0.5494	0.5359

Conclusions

- A process to explore large collections of fiber tracts via projections.
- An exploration strategy whereby the user is in control of the projections.
- An extensible system based on components to support the analysis of fiber tracts.

Finally

Software available at:

http://infoserver.lcad.icmc.usp.br/infovis2/Tools http://infoserver.lcad.icmc.usp.br/infovis2/FiberTractsExploration

Thanks to:

CNPq, CAPES, FAPESP (Brazilian Financial Agencies)

